Targeted Clindamycin Delivery Systems: Promising Options for Preventing and Treating Bacterial Infections Using Biomaterials.

Dagmara S��ota, Josef Jampilek, Agnieszka Sobczak-Kupiec
Author Information
  1. Dagmara S��ota: Department of Materials Science, Faculty of Materials Engineering and Physics, KrakowUniversity of Technology, 37 Jana Paw��a II Av., 31-864 Krakow, Poland. ORCID
  2. Josef Jampilek: Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia. ORCID
  3. Agnieszka Sobczak-Kupiec: Department of Materials Science, Faculty of Materials Engineering and Physics, KrakowUniversity of Technology, 37 Jana Paw��a II Av., 31-864 Krakow, Poland. ORCID

Abstract

Targeted therapy represents a real opportunity to improve the health and lives of patients. Developments in this field are confirmed by the fact that the global market for drug carriers was worth nearly $40 million in 2022. For this reason, materials engineering and the development of new drug carrier compositions for targeted therapy has become a key area of research in pharmaceutical drug delivery in recent years. Ceramics, polymers, and metals, as well as composites, are of great interest, as when they are appropriately processed or combined with each other, it is possible to obtain biomaterials for hard tissues, soft tissues, and skin applications. After appropriate modification, these materials can release the drug directly at the site requiring a therapeutic effect. This brief literature review characterizes routes of drug delivery into the body and discusses biomaterials from different groups, options for their modification with clindamycin, an antibiotic used for infections caused by aerobic and anaerobic Gram-positive bacteria, and different methods for the final processing of carriers. Examples of coating materials for skin wound healing, acne therapy, and bone tissue fillers are given. Furthermore, the reasons why the use of antibiotic therapy is crucial for a smooth and successful recovery and the risks of bacterial infections are explained. It was demonstrated that there is no single proven delivery scheme, and that the drug can be successfully released from different carriers depending on the destination.

Keywords

References

  1. Biol Pharm Bull. 2008 Dec;31(12):2277-82 [PMID: 19043213]
  2. Int J Microbiol. 2022 Apr 19;2022:1835603 [PMID: 35498395]
  3. ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34013-34028 [PMID: 30226742]
  4. Drug Dev Ind Pharm. 2021 Feb;47(2):280-291 [PMID: 33493022]
  5. Bioact Mater. 2022 May 26;20:137-163 [PMID: 35663339]
  6. Sci Rep. 2021 Dec 2;11(1):23345 [PMID: 34857863]
  7. Polymers (Basel). 2017 Apr 12;9(4): [PMID: 30970818]
  8. Int J Pharm. 2010 Aug 16;395(1-2):44-52 [PMID: 20546856]
  9. Gels. 2022 Jun 08;8(6): [PMID: 35735709]
  10. J Pharm Sci. 2014 Feb;103(2):567-79 [PMID: 24382825]
  11. J Pharm Sci. 2022 Jun;111(6):1749-1760 [PMID: 34890630]
  12. Infect Dis (Lond). 2023 Oct;55(10):751-753 [PMID: 37415443]
  13. Curr Neuropharmacol. 2016;14(4):376-91 [PMID: 26714584]
  14. Pharmaceutics. 2023 Apr 17;15(4): [PMID: 37111744]
  15. Br J Surg. 2017 Jan;104(2):e41-e54 [PMID: 28121039]
  16. J Vasc Surg. 2015 Oct;62(4):1023-1031.e5 [PMID: 26143662]
  17. Materials (Basel). 2020 Apr 09;13(7): [PMID: 32283608]
  18. Molecules. 2021 Sep 29;26(19): [PMID: 34641447]
  19. Adv Drug Deliv Rev. 2012 Jul;64(10):911-8 [PMID: 22326840]
  20. J Mater Sci Mater Med. 2023 Jul 27;34(8):39 [PMID: 37498466]
  21. Colloids Surf B Biointerfaces. 2012 Mar 1;91:144-53 [PMID: 22104405]
  22. J Pediatr. 2020 May;220:125-131.e5 [PMID: 32093934]
  23. J Bone Jt Infect. 2019 Oct 15;4(5):245-253 [PMID: 31700774]
  24. Mater Sci Eng C Mater Biol Appl. 2020 Nov;116:111149 [PMID: 32806280]
  25. Mater Sci Eng C Mater Biol Appl. 2014 Apr 1;37:210-22 [PMID: 24582242]
  26. Int J Mol Sci. 2022 Nov 15;23(22): [PMID: 36430548]
  27. Clin Infect Dis. 2021 Aug 16;73(4):e1011-e1017 [PMID: 33493317]
  28. Materials (Basel). 2019 Mar 01;12(5): [PMID: 30823676]
  29. Carbohydr Polym. 2022 Oct 15;294:119726 [PMID: 35868739]
  30. Pharmaceutics. 2021 Oct 09;13(10): [PMID: 34683935]
  31. Eur J Pharm Sci. 2018 Oct 15;123:441-451 [PMID: 30086353]
  32. Chemosphere. 2016 May;150:715-722 [PMID: 26746417]
  33. J Drug Deliv Sci Technol. 2020 Dec;60:102046 [PMID: 32905026]
  34. Materials (Basel). 2023 Sep 27;16(19): [PMID: 37834568]
  35. Ginekol Pol. 2001 Dec;72(12):1096-100 [PMID: 11883217]
  36. Front Pharmacol. 2020 Apr 28;11:524 [PMID: 32425781]
  37. Antibiotics (Basel). 2021 Jul 04;10(7): [PMID: 34356735]
  38. Cancers (Basel). 2022 Feb 02;14(3): [PMID: 35159037]
  39. Int J Pharm. 2007 Mar 6;332(1-2):17-23 [PMID: 17157458]
  40. Int J Mol Sci. 2023 Feb 16;24(4): [PMID: 36835389]
  41. Adv Ther (Weinh). 2020 Jun 26;4(1): [PMID: 33542947]
  42. Biochem Pharmacol. 2017 Jun 1;133:20-28 [PMID: 27940264]
  43. Mol Pharm. 2016 Sep 6;13(9):2906-11 [PMID: 26674753]
  44. Eur J Clin Microbiol Infect Dis. 2015 Nov;34(11):2265-73 [PMID: 26337434]
  45. J Control Release. 2014 May 10;181:1-10 [PMID: 24548479]
  46. J Biomater Sci Polym Ed. 2020 Aug;31(12):1489-1514 [PMID: 32362184]
  47. Clin Oral Investig. 2022 Jun;26(6):4467-4478 [PMID: 35235059]
  48. Clin Infect Dis. 2011 Jun;52 Suppl 7:S493-503 [PMID: 21546626]
  49. Dermatol Surg. 2011 Dec;37(12):1709-20 [PMID: 22092583]
  50. Life (Basel). 2022 Mar 28;12(4): [PMID: 35454987]
  51. J Endod. 2019 Jul;45(7):882-889 [PMID: 31133343]
  52. Colloids Surf B Biointerfaces. 2011 Feb 1;82(2):414-21 [PMID: 20951006]
  53. Int J Pharm. 2015 Oct 15;494(1):127-35 [PMID: 26276253]
  54. Microbiol Res. 2023 Jan;266:127221 [PMID: 36244081]
  55. Mater Sci Eng C Mater Biol Appl. 2013 Aug 1;33(6):3362-73 [PMID: 23706222]
  56. Colloids Surf B Biointerfaces. 2011 Feb 1;82(2):404-13 [PMID: 20951005]
  57. Int J Biol Macromol. 2020 Jul 15;155:153-162 [PMID: 32224179]
  58. Asian J Pharm Sci. 2018 Sep;13(5):450-458 [PMID: 32104419]
  59. Biomater Res. 2019 Jan 14;23:4 [PMID: 30675377]
  60. Acta Pharm Sin B. 2014 Apr;4(2):120-7 [PMID: 26579373]
  61. Materials (Basel). 2021 Mar 17;14(6): [PMID: 33802712]
  62. Adv Drug Deliv Rev. 2001 Sep 1;50(3):175-203 [PMID: 11500227]
  63. Colloids Surf B Biointerfaces. 2011 Oct 15;87(2):226-35 [PMID: 21723099]
  64. Artif Cells Nanomed Biotechnol. 2021 Dec;49(1):717-727 [PMID: 34907839]
  65. Int J Mol Sci. 2022 Jul 03;23(13): [PMID: 35806408]
  66. Materials (Basel). 2017 Mar 24;10(4): [PMID: 28772697]
  67. J Dent Res. 2019 Sep;98(10):1081-1087 [PMID: 31314998]
  68. Carbohydr Polym. 2017 Oct 1;173:100-106 [PMID: 28732847]
  69. Polymers (Basel). 2022 Jan 03;14(1): [PMID: 35012203]
  70. Polymers (Basel). 2022 Nov 26;14(23): [PMID: 36501546]
  71. Acta Biomater. 2022 May;144:230-241 [PMID: 35304323]
  72. Gels. 2022 Sep 01;8(9): [PMID: 36135266]
  73. Front Bioeng Biotechnol. 2021 May 28;9:683247 [PMID: 34124026]
  74. J Biomed Mater Res B Appl Biomater. 2022 Jan;110(1):157-175 [PMID: 34272804]
  75. Virulence. 2021 Dec;12(1):547-569 [PMID: 33522395]
  76. Int J Biol Macromol. 2020 Nov 1;162:1414-1428 [PMID: 32777428]
  77. Nanomaterials (Basel). 2020 Jul 31;10(8): [PMID: 32752105]
  78. Acta Biomater. 2008 Sep;4(5):1480-6 [PMID: 18485844]
  79. Pharm Res. 2015 Feb;32(2):604-16 [PMID: 25163980]
  80. Pharmaceutics. 2023 Mar 11;15(3): [PMID: 36986781]
  81. Pharm Dev Technol. 2009;14(6):588-601 [PMID: 19883248]
  82. Int J Mol Sci. 2023 Jan 09;24(2): [PMID: 36674810]
  83. Int J Biol Macromol. 2020 Mar 15;147:1239-1247 [PMID: 31739046]
  84. Nanomaterials (Basel). 2023 Apr 25;13(9): [PMID: 37177013]
  85. Antibiotics (Basel). 2022 May 21;11(5): [PMID: 35625345]
  86. Prenat Diagn. 2020 Aug;40(9):1178-1184 [PMID: 32441341]
  87. Nanomaterials (Basel). 2023 Feb 26;13(5): [PMID: 36903753]
  88. Biomed Microdevices. 2019 Apr 8;21(2):45 [PMID: 30963297]
  89. Pharmaceutics. 2022 Aug 22;14(8): [PMID: 36015374]
  90. J Cutan Med Surg. 2022 Jan-Feb;26(1):93-97 [PMID: 34396785]
  91. Am J Ther. 2017 May;24(3):e361-e369 [PMID: 28430673]
  92. EFSA J. 2020 Jul 31;18(7):e06211 [PMID: 32760467]
  93. Molecules. 2020 Oct 21;25(20): [PMID: 33096852]
  94. Polymers (Basel). 2020 Apr 27;12(5): [PMID: 32349233]
  95. Mar Drugs. 2021 Dec 15;19(12): [PMID: 34940707]

Grants

  1. POIR.04.04.00-00-16D7/18/Foundation for Polish Science
  2. APVV-22-0133/Slovak Research and Development Agency

MeSH Term

Humans
Clindamycin
Biocompatible Materials
Drug Delivery Systems
Anti-Bacterial Agents
Bacterial Infections
Drug Carriers
Animals

Chemicals

Clindamycin
Biocompatible Materials
Anti-Bacterial Agents
Drug Carriers

Word Cloud

Created with Highcharts 10.0.0drugtherapydeliverycarriersmaterialsbiomaterialsdifferentantibioticTargetedtissuesskinmodificationcansiteclindamycininfectionsrepresentsrealopportunityimprovehealthlivespatientsDevelopmentsfieldconfirmedfactglobalmarketworthnearly$40million2022reasonengineeringdevelopmentnewcarriercompositionstargetedbecomekeyarearesearchpharmaceuticalrecentyearsCeramicspolymersmetalswellcompositesgreatinterestappropriatelyprocessedcombinedpossibleobtainhardsoftapplicationsappropriatereleasedirectlyrequiringtherapeuticeffectbriefliteraturereviewcharacterizesroutesbodydiscussesgroupsoptionsusedcausedaerobicanaerobicGram-positivebacteriamethodsfinalprocessingExamplescoatingwoundhealingacnebonetissuefillersgivenFurthermorereasonsusecrucialsmoothsuccessfulrecoveryrisksbacterialexplaineddemonstratedsingleprovenschemesuccessfullyreleaseddependingdestinationClindamycinDeliverySystems:PromisingOptionsPreventingTreatingBacterialInfectionsUsingBiomaterialssystemssurgicalinfection

Similar Articles

Cited By