Genome-Wide Identification, Characterization, and Expression Analysis of the HD-Zip Gene Family in for Regulating Plant Height.

Hang Lin, Xinqiang Jiang, Cheng Qian, Yue Zhang, Xin Meng, Nairui Liu, Lulu Li, Jingcai Wang, Yiqian Ju
Author Information
  1. Hang Lin: College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
  2. Xinqiang Jiang: College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
  3. Cheng Qian: College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China. ORCID
  4. Yue Zhang: College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
  5. Xin Meng: College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
  6. Nairui Liu: College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
  7. Lulu Li: College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
  8. Jingcai Wang: East China Academy of Inventory and Planning of NFGA, Hangzhou 310019, China.
  9. Yiqian Ju: College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.

Abstract

The Homeodomain leucine zipper (HD-Zip) family of transcription factors is crucial in helping plants adapt to environmental changes and promoting their growth and development. Despite research on the HD-Zip family in various plants, studies in (crape myrtle) have not been reported. This study aimed to address this gap by comprehensively analyzing the HD-Zip gene family in crape myrtle. This study identified 52 HD-Zip genes in the genome of , designated as . These genes were distributed across 22 chromosomes and grouped into 4 clusters (HD-Zip I-IV) based on their phylogenetic relationships. Most gene structures and motifs within each cluster were conserved. Analysis of protein properties, gene structure, conserved motifs, and -acting regulatory elements revealed diverse roles of in various biological contexts. Examining the expression patterns of these 52 genes in 6 tissues (shoot apical meristem, tender shoot, and mature shoot) of non-dwarf and dwarf crape myrtles revealed that 2 ( and ) and 2 ( and ) were respectively upregulated in tender shoot of non-dwarf crape myrtles and tender and mature shoots of dwarf crape myrtles, which suggested the important roles of these genes in regulate the shoot development of . In addition, the expression levels of 2 ( and ) were significantly upregulated in the shoot apical meristem of non-dwarf crape myrtle. These genes were identified as key candidates for regulating plant height. This study enhanced the understanding of the functions of HD-Zip family members in the growth and development processes of woody plants and provided a theoretical basis for further studies on the molecular mechanisms underlying plant height.

Keywords

References

  1. J Exp Bot. 2008;59(11):3143-55 [PMID: 18603614]
  2. Genes (Basel). 2021 Aug 17;12(8): [PMID: 34440430]
  3. Plant Physiol. 2024 Feb 29;194(3):1870-1888 [PMID: 37930281]
  4. Genes (Basel). 2023 Dec 23;15(1): [PMID: 38254913]
  5. Rice (N Y). 2016 Dec;9(1):46 [PMID: 27624698]
  6. Plant Mol Biol. 2008 Jan;66(1-2):87-103 [PMID: 17999151]
  7. Plant Cell. 2014 Jul;26(7):2905-19 [PMID: 24989044]
  8. Plant Biotechnol J. 2018 Mar;16(3):808-817 [PMID: 28905477]
  9. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  10. EMBO J. 1991 Jul;10(7):1787-91 [PMID: 1675603]
  11. BMC Biol. 2021 Sep 24;19(1):213 [PMID: 34556094]
  12. BMC Plant Biol. 2021 Oct 23;21(1):485 [PMID: 34688264]
  13. Genome Biol. 2004;5(6):R41 [PMID: 15186492]
  14. Int J Mol Sci. 2023 Apr 21;24(8): [PMID: 37108818]
  15. Sci Rep. 2019 Oct 1;9(1):14121 [PMID: 31575941]
  16. Elife. 2018 May 01;7: [PMID: 29714687]
  17. New Phytol. 2018 Jul;219(1):408-421 [PMID: 29635737]
  18. Development. 2015 Feb 1;142(3):454-64 [PMID: 25564655]
  19. PLoS Genet. 2006 Jun;2(6):e89 [PMID: 16846251]
  20. Development. 2013 May;140(10):2118-29 [PMID: 23578926]
  21. J Exp Bot. 2017 Jan;68(1):55-69 [PMID: 27794018]
  22. Plant J. 2009 Sep;59(6):883-94 [PMID: 19453441]
  23. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  24. Hortic Res. 2023 Jul 21;10(9):uhad146 [PMID: 37701453]
  25. Int J Mol Sci. 2020 May 04;21(9): [PMID: 32375344]
  26. Genes (Basel). 2022 Nov 29;13(12): [PMID: 36553509]
  27. Trends Plant Sci. 2007 Sep;12(9):419-26 [PMID: 17698401]
  28. Physiol Plant. 2021 Jul;172(3):1452-1464 [PMID: 33432639]
  29. Plant Physiol. 2005 Sep;139(1):509-18 [PMID: 16055682]
  30. Int J Mol Sci. 2013 Apr 12;14(4):8122-47 [PMID: 23584027]
  31. FEBS J. 2008 Jun;275(11):2845-61 [PMID: 18430022]
  32. PLoS One. 2012;7(2):e31149 [PMID: 22359569]
  33. Physiol Plant. 2019 Dec;167(4):516-525 [PMID: 30851063]
  34. Yi Chuan. 2013 Oct;35(10):1179-88 [PMID: 24459891]
  35. New Phytol. 2021 Aug;231(3):1265-1277 [PMID: 33469925]
  36. J Exp Bot. 2020 Dec 31;71(22):7132-7145 [PMID: 32930788]
  37. PLoS One. 2016 Jul 12;11(7):e0158970 [PMID: 27404662]
  38. Int J Mol Sci. 2023 Mar 05;24(5): [PMID: 36902431]
  39. Sci Rep. 2018 Oct 11;8(1):15162 [PMID: 30310123]
  40. Front Plant Sci. 2023 Feb 15;14:1097265 [PMID: 36875584]
  41. New Phytol. 2022 Aug;235(3):1111-1128 [PMID: 35491431]
  42. Plant Cell Physiol. 2022 Nov 22;63(11):1729-1744 [PMID: 36130232]
  43. Nucleic Acids Res. 2001 Dec 1;29(23):4866-72 [PMID: 11726696]
  44. Plant Biotechnol J. 2020 Dec;18(12):2559-2572 [PMID: 32559019]
  45. Biochem Biophys Res Commun. 2019 Aug 13;516(1):112-119 [PMID: 31200955]
  46. Int J Mol Sci. 2018 Nov 24;19(12): [PMID: 30477211]
  47. New Phytol. 2011 Jun;190(4):823-837 [PMID: 21517872]
  48. PeerJ. 2019 Aug 8;7:e7499 [PMID: 31410318]
  49. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 [PMID: 19458158]
  50. Plant Signal Behav. 2009 Feb;4(2):86-8 [PMID: 19649178]

Grants

  1. Grant No. 32301650; Grant No. ZR2022QC143/the National Natural Science Foundation of China (Grant No. 32301650); the National Natural Science Foundation of Shandong Province (Grant No. ZR2022QC143)

MeSH Term

Gene Expression Regulation, Plant
Genome, Plant
Homeodomain Proteins
Lagerstroemia
Leucine Zippers
Multigene Family
Phylogeny
Plant Proteins
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0HD-Zipcrapeshootfamilygenegenesplantsdevelopmentmyrtlestudyexpressiontendernon-dwarfmyrtles2plantheightgrowthvariousstudiesidentified52motifsconservedAnalysisrevealedrolesapicalmeristemmaturedwarfupregulatedHomeodomainleucinezippertranscriptionfactorscrucialhelpingadaptenvironmentalchangespromotingDespiteresearchreportedaimedaddressgapcomprehensivelyanalyzinggenomedesignateddistributedacross22chromosomesgrouped4clustersI-IVbasedphylogeneticrelationshipsstructureswithinclusterproteinpropertiesstructure-actingregulatoryelementsdiversebiologicalcontextsExaminingpatterns6tissuesrespectivelyshootssuggestedimportantregulateadditionlevelssignificantlykeycandidatesregulatingenhancedunderstandingfunctionsmembersprocesseswoodyprovidedtheoreticalbasismolecularmechanismsunderlyingGenome-WideIdentificationCharacterizationExpressionGeneFamilyRegulatingPlantHeightLagerstroemiaindica

Similar Articles

Cited By