Thaumatin-like Proteins in Legumes: Functions and Potential Applications-A Review.

Lanlan Feng, Shaowei Wei, Yin Li
Author Information
  1. Lanlan Feng: Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China. ORCID
  2. Shaowei Wei: Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China. ORCID
  3. Yin Li: Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China. ORCID

Abstract

Thaumatin-like proteins (TLPs) comprise a complex and evolutionarily conserved protein family that participates in host defense and several developmental processes in plants, fungi, and animals. Importantly, TLPs are plant host defense proteins that belong to pathogenesis-related family 5 (PR-5), and growing evidence has demonstrated that they are involved in resistance to a variety of fungal diseases in many crop plants, particularly legumes. Nonetheless, the roles and underlying mechanisms of the TLP family in legumes remain unclear. The present review summarizes recent advances related to the classification, structure, and host resistance of legume TLPs to biotic and abiotic stresses; analyzes and predicts possible protein-protein interactions; and presents their roles in phytohormone response, root nodule formation, and symbiosis. The characteristics of TLPs provide them with broad prospects for plant breeding and other uses. Searching for legume TLP genetic resources and functional genes, and further research on their precise function mechanisms are necessary.

Keywords

References

  1. Plant Dis. 2023 Feb;107(2):335-343 [PMID: 35748737]
  2. Mol Biol Rep. 2020 Jun;47(6):4659-4670 [PMID: 32133603]
  3. Genomics. 2021 Sep;113(5):2977-2988 [PMID: 34153499]
  4. J Plant Physiol. 2007 Mar;164(3):238-52 [PMID: 16542753]
  5. Int J Biol Macromol. 2021 Oct 31;189:678-689 [PMID: 34390750]
  6. Front Plant Sci. 2023 Jun 02;14:1165658 [PMID: 37332732]
  7. Front Plant Sci. 2023 Oct 30;14:1275854 [PMID: 38023864]
  8. Plant J. 1999 Aug;19(4):473-80 [PMID: 10504569]
  9. Springerplus. 2012 Oct 05;1:30 [PMID: 23961360]
  10. Front Genet. 2021 Jun 25;12:632685 [PMID: 34249077]
  11. Front Immunol. 2020 Aug 21;11:1825 [PMID: 32973760]
  12. Plant Physiol Biochem. 2006 Oct;44(10):604-10 [PMID: 17056265]
  13. Physiol Plant. 2010 May;139(1):27-38 [PMID: 20059734]
  14. Z Naturforsch C J Biosci. 2001 Jan-Feb;56(1-2):65-76 [PMID: 11302217]
  15. Plant Physiol. 1992 Mar;98(3):955-61 [PMID: 16668770]
  16. Front Chem. 2018 Mar 02;6:34 [PMID: 29552555]
  17. Genes (Basel). 2023 Jun 15;14(6): [PMID: 37372451]
  18. Compr Rev Food Sci Food Saf. 2018 Sep;17(5):1325-1338 [PMID: 33350163]
  19. Biochem Biophys Res Commun. 2018 Jun 7;500(3):704-709 [PMID: 29678574]
  20. Plant Physiol Biochem. 2024 Jan;206:108243 [PMID: 38048701]
  21. Theor Appl Genet. 2003 Jul;107(2):379-86 [PMID: 12709786]
  22. Int J Mol Sci. 2021 Oct 15;22(20): [PMID: 34681789]
  23. Phytochemistry. 2002 Sep;61(1):1-6 [PMID: 12165295]
  24. Int J Mol Sci. 2020 Oct 21;21(20): [PMID: 33096644]
  25. Plant Physiol. 2003 Dec;133(4):1935-46 [PMID: 14605229]
  26. Plant Mol Biol. 1993 Feb;21(4):583-93 [PMID: 8448358]
  27. J Integr Plant Biol. 2022 Feb;64(2):244-267 [PMID: 34962095]
  28. Plant Mol Biol. 2023 Nov;113(4-5):157-170 [PMID: 37973764]
  29. Plant Mol Biol. 2009 Mar;69(4):473-88 [PMID: 19083153]
  30. Plants (Basel). 2023 Apr 27;12(9): [PMID: 37176856]
  31. J Enzyme Inhib Med Chem. 2009 Jun;24(3):646-54 [PMID: 18951281]
  32. Plant Cell Rep. 2010 May;29(5):419-36 [PMID: 20204373]
  33. Cell Microbiol. 2018 Apr;20(4): [PMID: 29084417]
  34. Nature. 2012 Apr 11;484(7393):186-94 [PMID: 22498624]
  35. Appl Microbiol Biotechnol. 2000 Feb;53(2):145-51 [PMID: 10709975]
  36. FEBS J. 2016 Jun;283(11):2197-201 [PMID: 27263510]
  37. Arch Biochem Biophys. 2001 Sep 15;393(2):271-80 [PMID: 11556814]
  38. Curr Opin Plant Biol. 2021 Aug;62:102030 [PMID: 33684883]
  39. Int J Biol Macromol. 2023 Dec 31;253(Pt 7):127388 [PMID: 37858648]
  40. Front Microbiol. 2023 Feb 23;14:1131599 [PMID: 36910175]
  41. Genes (Basel). 2023 Aug 14;14(8): [PMID: 37628673]
  42. Mol Biotechnol. 2012 Nov;52(3):251-61 [PMID: 22207456]
  43. Semin Cell Dev Biol. 2016 Sep;57:84-92 [PMID: 27133541]
  44. Sci Rep. 2021 Aug 16;11(1):16604 [PMID: 34400661]
  45. PLoS One. 2013 Dec 19;8(12):e83963 [PMID: 24367621]
  46. PLoS One. 2011 Feb 22;6(2):e16930 [PMID: 21364945]
  47. Plant Physiol Biochem. 2006 Oct;44(10):574-80 [PMID: 17070691]
  48. Plant Physiol. 1996 Jan;110(1):227-32 [PMID: 8587984]
  49. iScience. 2021 May 24;24(6):102642 [PMID: 34151234]
  50. Front Plant Sci. 2022 Aug 17;13:912296 [PMID: 36061804]
  51. Planta. 2008 Oct;228(5):883-90 [PMID: 18651170]
  52. Genes (Basel). 2024 Jan 15;15(1): [PMID: 38254991]
  53. Int Arch Allergy Immunol. 2008;147(4):289-98 [PMID: 18617748]
  54. Plant Physiol Biochem. 2009 Jan;47(1):73-9 [PMID: 19010689]
  55. Mol Plant Pathol. 2011 Oct;12(8):786-98 [PMID: 21726379]
  56. Z Naturforsch C J Biosci. 2001 Nov-Dec;56(11-12):1095-107 [PMID: 11837663]
  57. Life (Basel). 2022 Dec 08;12(12): [PMID: 36556426]
  58. Plant Physiol. 1998 Dec;118(4):1431-8 [PMID: 9847118]
  59. Mol Plant Microbe Interact. 2019 Jan;32(1):35-44 [PMID: 30252618]
  60. Theor Appl Genet. 2022 Nov;135(11):4095-4121 [PMID: 36239765]
  61. Molecules. 2018 Jun 14;23(6): [PMID: 29899211]
  62. Plant Biotechnol J. 2022 Nov;20(11):2159-2173 [PMID: 35869670]
  63. Genet Mol Res. 2016 Feb 22;15(1): [PMID: 26909999]
  64. Plants (Basel). 2022 Mar 11;11(6): [PMID: 35336630]
  65. Plant J. 2013 Feb;73(4):546-54 [PMID: 23075038]
  66. Front Microbiol. 2022 Aug 25;13:998817 [PMID: 36090119]
  67. Int J Mol Sci. 2021 Sep 17;22(18): [PMID: 34576236]
  68. Front Plant Sci. 2017 Jun 07;8:958 [PMID: 28638398]
  69. Int J Mol Sci. 2022 Dec 19;23(24): [PMID: 36555841]
  70. Life Sci. 2002 Jan 11;70(8):927-35 [PMID: 11855377]
  71. Int J Mol Sci. 2023 Jun 17;24(12): [PMID: 37373405]
  72. Plant J. 2021 May;106(3):862-875 [PMID: 33595875]
  73. Theor Appl Genet. 2018 Aug;131(8):1671-1681 [PMID: 29744525]
  74. Nat Microbiol. 2016 Nov 14;2:16211 [PMID: 27841851]
  75. Plants (Basel). 2023 Jun 05;12(11): [PMID: 37299204]
  76. Int J Mol Sci. 2023 Jan 22;24(3): [PMID: 36768531]
  77. Curr Protein Pept Sci. 2021;22(5):430-440 [PMID: 33749560]
  78. Planta. 2010 Sep;232(4):949-62 [PMID: 20645107]
  79. J Biosci Bioeng. 2006 Nov;102(5):375-89 [PMID: 17189164]
  80. Trends Plant Sci. 2018 Jun;23(6):469-472 [PMID: 29753632]
  81. Plants (Basel). 2021 Dec 02;10(12): [PMID: 34961118]
  82. Life (Basel). 2021 Aug 23;11(8): [PMID: 34440607]
  83. Plant Cell Physiol. 2022 Nov 22;63(11):1554-1572 [PMID: 35713290]
  84. Nat Struct Mol Biol. 2014 Apr;21(4):301-7 [PMID: 24699078]
  85. Plant Cell Physiol. 2000 Feb;41(2):148-57 [PMID: 10795308]
  86. Plants (Basel). 2021 Sep 22;10(10): [PMID: 34685785]
  87. J Genet Eng Biotechnol. 2018 Jun;16(1):125-131 [PMID: 30647714]
  88. Proteomics. 2012 Nov;12(21):3219-28 [PMID: 22945350]
  89. Crit Rev Food Sci Nutr. 1995 Sep;35(5):455-66 [PMID: 8573283]
  90. Genomics. 2020 May;112(3):2499-2509 [PMID: 32044327]
  91. Turk J Biol. 2020 Aug 19;44(4):176-187 [PMID: 32922125]
  92. Biochem Biophys Res Commun. 1999 Sep 16;263(1):130-4 [PMID: 10486265]
  93. PeerJ. 2022 Mar 24;10:e12979 [PMID: 35356470]
  94. Annu Rev Phytopathol. 2006;44:135-62 [PMID: 16602946]
  95. Protoplasma. 2017 Jul;254(4):1579-1589 [PMID: 27900595]
  96. Probiotics Antimicrob Proteins. 2019 Mar;11(1):299-309 [PMID: 29717420]
  97. Mol Biotechnol. 2013 Jun;54(2):609-22 [PMID: 23086453]
  98. BMC Plant Biol. 2011 Feb 15;11:33 [PMID: 21324123]
  99. Plant Cell Physiol. 2014 Sep;55(9):1679-89 [PMID: 25059584]
  100. Proteins. 2004 Jan 1;54(1):170-3 [PMID: 14705035]
  101. Phytopathology. 2021 Oct;111(10):1790-1799 [PMID: 33616418]
  102. Phytochemistry. 1998 Dec;49(8):2207-13 [PMID: 9887521]
  103. Biochim Biophys Acta. 2016 Jan;1860(1 Pt A):46-56 [PMID: 26493723]
  104. Front Plant Sci. 2022 Apr 01;13:849043 [PMID: 35432404]
  105. Molecules. 2022 Aug 22;27(16): [PMID: 36014591]

Grants

  1. 31171625/National Natural Science Foundation of China
  2. 2020A1414040005/Science and Technology Planning Project of Guangdong Province, China
  3. 2021A1515110341/Guangdong Basic and Applied Basic Research Foundation, China

Word Cloud

Created with Highcharts 10.0.0TLPsfamilyhostTLPlegumeThaumatin-likeproteinsdefenseplantsplantPR-5resistancelegumesrolesmechanismsbioticabioticstresscomprisecomplexevolutionarilyconservedproteinparticipatesseveraldevelopmentalprocessesfungianimalsImportantlybelongpathogenesis-related5growingevidencedemonstratedinvolvedvarietyfungaldiseasesmanycropparticularlyNonethelessunderlyingremainunclearpresentreviewsummarizesrecentadvancesrelatedclassificationstructurestressesanalyzespredictspossibleprotein-proteininteractionspresentsphytohormoneresponserootnoduleformationsymbiosischaracteristicsprovidebroadprospectsbreedingusesSearchinggeneticresourcesfunctionalgenesresearchprecisefunctionnecessaryProteinsLegumes:FunctionsPotentialApplications-AReview

Similar Articles

Cited By