CPPLS-MLP: a method for constructing cell-cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data.

Tianjiao Zhang, Zhenao Wu, Liangyu Li, Jixiang Ren, Ziheng Zhang, Guohua Wang
Author Information
  1. Tianjiao Zhang: College of Computer and Control Engineering, Northeast Forestry University Harbin, 150040, China. ORCID
  2. Zhenao Wu: College of Computer and Control Engineering, Northeast Forestry University Harbin, 150040, China. ORCID
  3. Liangyu Li: College of Computer and Control Engineering, Northeast Forestry University Harbin, 150040, China. ORCID
  4. Jixiang Ren: College of Computer and Control Engineering, Northeast Forestry University Harbin, 150040, China. ORCID
  5. Ziheng Zhang: College of Computer and Control Engineering, Northeast Forestry University Harbin, 150040, China. ORCID
  6. Guohua Wang: College of Computer and Control Engineering, Northeast Forestry University Harbin, 150040, China.

Abstract

In the growth and development of multicellular organisms, the immune processes of the immune system and the maintenance of the organism's internal environment, cell communication plays a crucial role. It exerts a significant influence on regulating internal cellular states such as gene expression and cell functionality. Currently, the mainstream methods for studying intercellular communication are focused on exploring the ligand-receptor-transcription factor and ligand-receptor-subunit scales. However, there is relatively limited research on the association between intercellular communication and highly variable genes (HVGs). As some HVGs are closely related to cell communication, accurately identifying these HVGs can enhance the accuracy of constructing cell communication networks. The rapid development of single-cell sequencing (scRNA-seq) and spatial transcriptomics technologies provides a data foundation for exploring the relationship between intercellular communication and HVGs. Therefore, we propose CPPLS-MLP, which can identify HVGs closely related to intercellular communication and further analyze the impact of Multiple Input Multiple Output cellular communication on the differential expression of these HVGs. By comparing with the commonly used method CCPLS for constructing intercellular communication networks, we validated the superior performance of our method in identifying cell-type-specific HVGs and effectively analyzing the influence of neighboring cell types on HVG expression regulation. Source codes for the CPPLS_MLP R, python packages and the related scripts are available at 'CPPLS_MLP Github [https://github.com/wuzhenao/CPPLS-MLP]'.

Keywords

References

  1. Mol Cell. 2020 Mar 5;77(5):937-950.e6 [PMID: 31926851]
  2. Inflamm Regen. 2021 Jul 16;41(1):22 [PMID: 34271973]
  3. Nat Methods. 2020 Feb;17(2):159-162 [PMID: 31819264]
  4. BMC Bioinformatics. 2014 Feb 21;15:51 [PMID: 24555693]
  5. Genome Biol. 2019 Dec 23;20(1):296 [PMID: 31870423]
  6. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  7. Commun Biol. 2022 Jan 11;5(1):21 [PMID: 35017628]
  8. Brief Bioinform. 2022 Jul 18;23(4): [PMID: 35753695]
  9. Science. 2012 Apr 27;336(6080):425-6 [PMID: 22539709]
  10. Genome Biol. 2021 Mar 8;22(1):78 [PMID: 33685491]
  11. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33179736]
  12. Annu Rev Immunol. 2020 Apr 26;38:421-453 [PMID: 31990619]
  13. Nucleic Acids Res. 2020 Jun 4;48(10):e55 [PMID: 32196115]
  14. ChemMedChem. 2020 Aug 19;15(16):1515-1528 [PMID: 32311219]
  15. Bioinformatics. 2020 Aug 1;36(15):4296-4300 [PMID: 32399572]
  16. Sci Adv. 2021 Apr 14;7(16): [PMID: 33853780]
  17. Brief Bioinform. 2023 Sep 20;24(5): [PMID: 37643374]
  18. Nat Commun. 2020 Oct 6;11(1):5011 [PMID: 33024107]
  19. Bioinformatics. 2023 Jun 1;39(6): [PMID: 37294799]
  20. J Neurosci. 2014 Jul 16;34(29):9656-64 [PMID: 25031405]
  21. Nat Rev Mol Cell Biol. 2011 Feb;12(2):119-25 [PMID: 21224886]
  22. Protein Cell. 2020 Dec;11(12):866-880 [PMID: 32435978]
  23. Nat Rev Mol Cell Biol. 2023 Oct;24(10):695-713 [PMID: 37280296]
  24. Bioinformatics. 2019 Aug 15;35(16):2865-2867 [PMID: 30590489]
  25. Bioinformatics. 2021 Nov 18;37(22):4263-4265 [PMID: 35032393]
  26. Science. 2005 Dec 9;310(5754):1646-53 [PMID: 16339439]
  27. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  28. Cells. 2019 Dec 19;9(1): [PMID: 31861624]
  29. PLoS One. 2013 Sep 09;8(9):e72780 [PMID: 24039801]
  30. Nat Rev Genet. 2021 Feb;22(2):71-88 [PMID: 33168968]
  31. Bioinformatics. 2022 Oct 31;38(21):4868-4877 [PMID: 36063454]
  32. Ann Rheum Dis. 2016 May;75(5):924-32 [PMID: 25985971]
  33. Nucleic Acids Res. 2021 Sep 7;49(15):8520-8534 [PMID: 34331449]
  34. Pflugers Arch. 2020 Jan;472(1):117-133 [PMID: 31875236]
  35. Nat Commun. 2022 Jun 14;13(1):3409 [PMID: 35701396]
  36. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33480403]
  37. Cancers (Basel). 2023 Mar 30;15(7): [PMID: 37046716]
  38. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  39. Neuron. 2015 Dec 16;88(6):1253-1267 [PMID: 26671462]
  40. Nat Commun. 2023 Jul 6;14(1):4003 [PMID: 37414763]
  41. Nat Protoc. 2020 Apr;15(4):1484-1506 [PMID: 32103204]
  42. Nat Rev Immunol. 2018 Mar;18(3):153-167 [PMID: 28990585]
  43. Nat Rev Immunol. 2021 Nov;21(11):704-717 [PMID: 33911232]

Grants

  1. 2022YFF1202100/National Key Research and Development Program of China
  2. 62172087/National Natural Science Foundation of China
  3. 62225109/National Science Foundation for Distinguished Young Scholars of China

MeSH Term

Single-Cell Analysis
Cell Communication
Transcriptome
Gene Expression Profiling
Humans
Computational Biology
Gene Regulatory Networks
Animals
Software
Algorithms

Word Cloud

Created with Highcharts 10.0.0communicationHVGscellintercellularrelatedexpressionhighlyvariablegenesidentifyingconstructingnetworksmethoddevelopmentimmuneinternalinfluencecellularexploringcloselycansingle-cellsequencingscRNA-seqspatialtranscriptomicsdataMultiplegrowthmulticellularorganismsprocessessystemmaintenanceorganism'senvironmentplayscrucialroleexertssignificantregulatingstatesgenefunctionalityCurrentlymainstreammethodsstudyingfocusedligand-receptor-transcriptionfactorligand-receptor-subunitscalesHoweverrelativelylimitedresearchassociationaccuratelyenhanceaccuracyrapidtechnologiesprovidesfoundationrelationshipThereforeproposeCPPLS-MLPidentifyanalyzeimpactInputOutputdifferentialcomparingcommonlyusedCCPLSvalidatedsuperiorperformancecell-type-specificeffectivelyanalyzingneighboringtypesHVGregulationSourcecodesCPPLS_MLPRpythonpackagesscriptsavailable'CPPLS_MLPGithub[https://githubcom/wuzhenao/CPPLS-MLP]'CPPLS-MLP:cell-cellbasedST-seq

Similar Articles

Cited By