Sensitivity and specificity of machine learning and deep learning algorithms in the diagnosis of thoracolumbar injuries resulting in vertebral fractures: A systematic review and meta-analysis.

Hakija Bečulić, Emir Begagić, Amina Džidić-Krivić, Ragib Pugonja, Namira Softić, Binasa Bašić, Simon Balogun, Adem Nuhović, Emir Softić, Adnana Ljevaković, Haso Sefo, Sabina Šegalo, Rasim Skomorac, Mirza Pojskić
Author Information
  1. Hakija Bečulić: Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000, Zenica, Bosnia and Herzegovina.
  2. Emir Begagić: Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000, Zenica, Bosnia and Herzegovina.
  3. Amina Džidić-Krivić: Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000, Zenica, Bosnia and Herzegovina.
  4. Ragib Pugonja: Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000, Zenica, Bosnia and Herzegovina.
  5. Namira Softić: Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000, Zenica, Bosnia and Herzegovina.
  6. Binasa Bašić: Department of Neurology, General Hospital Travnik, Kalibunar Bb, 72270, Travnik, Bosnia and Herzegovina.
  7. Simon Balogun: Division of Neurosurgery, Department of Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ilesa Road PMB 5538, 220282, Ile-Ife, Nigeria.
  8. Adem Nuhović: Department of General Medicine, School of Medicine, University of Sarajevo, Univerzitetska 1, 71000, Sarajevo, Bosnia and Herzegovina.
  9. Emir Softić: Department of Patophysiology, School of Medicine, University of Zenica, Travnička 1, 72000, Zenica, Bosnia and Herzegovina.
  10. Adnana Ljevaković: Department of Neurology, General Hospital Travnik, Kalibunar Bb, 72270, Travnik, Bosnia and Herzegovina.
  11. Haso Sefo: Neurosurgery Clinic, University Clinical Center Sarajevo, Bolnička 25, 71000, Sarajevo, Bosnia and Herzegovina.
  12. Sabina Šegalo: Department of Laboratory Technologies, Faculty of Health Siences, University of Sarajevo, Stjepana Tomića 1, 71000, Sarajevo, Bosnia and Herzegovina.
  13. Rasim Skomorac: Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000, Zenica, Bosnia and Herzegovina.
  14. Mirza Pojskić: Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033, Marburg, Germany.

Abstract

Introduction: Clinicians encounter challenges in promptly diagnosing thoracolumbar injuries (TLIs) and fractures (VFs), motivating the exploration of Artificial Intelligence (AI) and Machine Learning (ML) and Deep Learning (DL) technologies to enhance diagnostic capabilities. Despite varying evidence, the noteworthy transformative potential of AI in healthcare, leveraging insights from daily healthcare data, persists.
Research question: This review investigates the utilization of ML and DL in TLIs causing VFs.
Materials and methods: Employing Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) methodology, a systematic review was conducted in PubMed and Scopus databases, identifying 793 studies. Seventeen were included in the systematic review, and 11 in the meta-analysis. Variables considered encompassed publication years, geographical location, study design, total participants (14,524), gender distribution, ML or DL methods, specific pathology, diagnostic modality, test analysis variables, validation details, and key study conclusions. Meta-analysis assessed specificity, sensitivity, and conducted hierarchical summary receiver operating characteristic curve (HSROC) analysis.
Results: Predominantly conducted in China (29.41%), the studies involved 14,524 participants. In the analysis, 11.76% (N = 2) focused on ML, while 88.24% (N = 15) were dedicated to deep DL. Meta-analysis revealed a sensitivity of 0.91 (95% CI = 0.86-0.95), consistent specificity of 0.90 (95% CI = 0.86-0.93), with a false positive rate of 0.097 (95% CI = 0.068-0.137).
Conclusion: The study underscores consistent specificity and sensitivity estimates, affirming the diagnostic test's robustness. However, the broader context of ML applications in TLIs emphasizes the critical need for standardization in methodologies to enhance clinical utility.

Keywords

References

  1. Res Synth Methods. 2023 Nov;14(6):916-925 [PMID: 37640914]
  2. Orthop Rev (Pavia). 2019 May 23;11(2):7774 [PMID: 31210909]
  3. Ann Intern Med. 2011 Oct 18;155(8):529-36 [PMID: 22007046]
  4. Orthop Surg. 2012 May;4(2):67-70 [PMID: 22615149]
  5. Sovrem Tekhnologii Med. 2021;12(6):111-118 [PMID: 34796024]
  6. Spine (Phila Pa 1976). 2006 Feb 15;31(4):451-8 [PMID: 16481957]
  7. High Educ (Dordr). 2022;83(4):881-910 [PMID: 34092803]
  8. Arch Public Health. 2022 Mar 29;80(1):95 [PMID: 35351195]
  9. World Neurosurg. 2024 Feb;182:144-158.e1 [PMID: 37951465]
  10. Comput Math Methods Med. 2022 Oct 5;2022:8747487 [PMID: 36245837]
  11. J Bone Joint Surg Am. 2020 May 6;102(9):830-840 [PMID: 32379124]
  12. Spine J. 2023 Dec;23(12):1750-1763 [PMID: 37619871]
  13. Injury. 2023 Jul;54(7):110771 [PMID: 37164902]
  14. Sci Afr. 2023 Mar;19:e01504 [PMID: 36531434]
  15. Int J Spine Surg. 2023 Jun;17(S1):S3-S10 [PMID: 37364938]
  16. Eur Radiol. 2023 May;33(5):3188-3199 [PMID: 36576545]
  17. iScience. 2023 Sep 21;26(11):107983 [PMID: 37867956]
  18. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  19. Clin Interv Aging. 2019 Feb 15;14:361-366 [PMID: 30863029]
  20. Sci Rep. 2020 Nov 18;10(1):20031 [PMID: 33208824]
  21. BMC Med Res Methodol. 2022 Nov 28;22(1):306 [PMID: 36443653]
  22. Spine (Phila Pa 1976). 2019 May 15;44(10):732-739 [PMID: 30395086]
  23. Med Glas (Zenica). 2024 Feb 01;21(1): [PMID: 37950660]
  24. Clin Spine Surg. 2018 Jul;31(6):E317-E321 [PMID: 29847416]
  25. Chin Med J (Engl). 2019 Nov 5;132(21):2521-2523 [PMID: 31658155]
  26. Front Endocrinol (Lausanne). 2023 Mar 27;14:1132725 [PMID: 37051194]
  27. J Imaging. 2023 Sep 18;9(9): [PMID: 37754951]
  28. Front Artif Intell. 2023 Aug 29;6:1227091 [PMID: 37705603]
  29. Neurospine. 2021 Dec;18(4):656-666 [PMID: 35000319]
  30. Eur Spine J. 2011 Aug;20 Suppl 3:390-6 [PMID: 21779855]
  31. J Bone Miner Res. 2023 Jun;38(6):887-895 [PMID: 37038364]
  32. Clin Orthop Relat Res. 2021 Jul 1;479(7):1598-1612 [PMID: 33651768]
  33. World J Radiol. 2015 Sep 28;7(9):253-65 [PMID: 26435776]
  34. Medicina (Kaunas). 2022 Jul 26;58(8): [PMID: 35893113]
  35. BMC Musculoskelet Disord. 2023 Oct 17;24(1):819 [PMID: 37848859]
  36. Spine (Phila Pa 1976). 2020 Dec 1;45(23):1639-1648 [PMID: 32890307]
  37. Cureus. 2023 Sep 16;15(9):e45350 [PMID: 37849576]
  38. Acta Radiol. 2016 Jan;57(1):74-81 [PMID: 25855667]
  39. Spinal Cord. 2022 Sep;60(9):812-819 [PMID: 35396455]
  40. SICOT J. 2023;9:21 [PMID: 37409882]
  41. J Orthop Surg Res. 2023 Jan 23;18(1):62 [PMID: 36683045]
  42. PLoS One. 2021 Jan 28;16(1):e0245992 [PMID: 33507982]
  43. Eur Spine J. 2013 Oct;22(10):2184-201 [PMID: 23508335]
  44. Comput Struct Biotechnol J. 2023 Jun 27;21:3452-3458 [PMID: 37457807]
  45. Biomed Eng Online. 2023 Jul 10;22(1):68 [PMID: 37430259]
  46. Sci Rep. 2023 Nov 3;13(1):19017 [PMID: 37923853]
  47. Eur Spine J. 2009 Jul;18(7):938-42 [PMID: 19283414]
  48. J Neurosurg. 2018 Apr 27;130(4):1055-1064 [PMID: 29701548]
  49. J Craniovertebr Junction Spine. 2013 Jan;4(1):3-9 [PMID: 24381449]
  50. World Neurosurg. 2018 May;113:e345-e363 [PMID: 29454115]
  51. Clin Radiol. 2020 Sep;75(9):713.e17-713.e28 [PMID: 32591230]
  52. Neurosurg Focus. 2022 Apr;52(4):E5 [PMID: 35364582]
  53. SN Comput Sci. 2021;2(3):160 [PMID: 33778771]
  54. Eur Spine J. 2022 Aug;31(8):2022-2030 [PMID: 35089420]
  55. Spine (Phila Pa 1976). 2015 Apr 15;40(8):530-6 [PMID: 25868093]

Word Cloud

Created with Highcharts 10.0.0MLDLreviewspecificitylearninginjuriesTLIsdiagnosticsystematicconductedstudyanalysissensitivity095%CI = 0thoracolumbarfracturesVFsArtificialAIMachineLearningDeepenhancehealthcarestudies11meta-analysisparticipants14524Meta-analysisdeep86-0consistentIntroduction:CliniciansencounterchallengespromptlydiagnosingmotivatingexplorationIntelligencetechnologiescapabilitiesDespitevaryingevidencenoteworthytransformativepotentialleveraginginsightsdailydatapersistsResearchquestion:investigatesutilizationcausingMaterialsmethods:EmployingPreferredReportingItemsSystematicReviewsMeta-AnalyzesPRISMAmethodologyPubMedScopusdatabasesidentifying793SeventeenincludedVariablesconsideredencompassedpublicationyearsgeographicallocationdesigntotalgenderdistributionmethodsspecificpathologymodalitytestvariablesvalidationdetailskeyconclusionsassessedhierarchicalsummaryreceiveroperatingcharacteristiccurveHSROCResults:PredominantlyChina2941%involved76%N = 2focused8824%N = 15dedicatedrevealed91959093falsepositiverate097068-0137Conclusion:underscoresestimatesaffirmingtest'srobustnessHoweverbroadercontextapplicationsemphasizescriticalneedstandardizationmethodologiesclinicalutilitySensitivitymachinealgorithmsdiagnosisresultingvertebralfractures:intelligenceThoracolumbarVertebral

Similar Articles

Cited By (1)