The role of environmental gradients and microclimates in structuring communities and functional groups of lizards in a rainforest-savanna transition area.

Alan F Souza-Oliveira, Gabriela Zuquim, Lidia F Martins, Lucas N Bandeira, Luisa Maria Diele-Viegas, Victor H G L Cavalcante, Fabricio Baccaro, Guarino Rinaldi Colli, Hanna Tuomisto, Fernanda P Werneck
Author Information
  1. Alan F Souza-Oliveira: Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil.
  2. Gabriela Zuquim: Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark.
  3. Lidia F Martins: Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil.
  4. Lucas N Bandeira: Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil.
  5. Luisa Maria Diele-Viegas: Department of Biology, University of Maryland, College Park, United States of America.
  6. Victor H G L Cavalcante: Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, Brazil.
  7. Fabricio Baccaro: Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
  8. Guarino Rinaldi Colli: Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, Brazil.
  9. Hanna Tuomisto: Department of Biology, University of Turku, Turku, Finland.
  10. Fernanda P Werneck: Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil.

Abstract

Environmental heterogeneity poses a significant influence on the functional characteristics of species and communities at local scales. Environmental transition zones, such as at the savanna-forest borders, can act as regions of ecological tension when subjected to sharp variations in the microclimate. For ectothermic organisms, such as lizards, environmental temperatures directly influence physiological capabilities, and some species use different thermoregulation strategies that produce varied responses to local climatic conditions, which in turn affect species occurrence and community dynamics. In the context of global warming, these various strategies confer different types of vulnerability as well as risks of extinction. To assess the vulnerability of a species and understand the relationships between environmental variations, thermal tolerance of a species and community structure, lizard communities in forest-savanna transition areas of two national parks in the southwestern Amazon were sampled and their thermal functional traits were characterized. Then, we investigated how community structure and functional thermal variation were shaped by two environmental predictors (, microclimates estimated locally and vegetation structure estimated from remote sensing). It was found that the community structure was more strongly predicted by the canopy surface reflectance values obtained remote sensing than by microclimate variables. Environmental temperatures were not the most important factor affecting the occurrence of species, and the variations in ecothermal traits demonstrated a pattern within the taxonomic hierarchy at the family level. This pattern may indicate a tendency for evolutionary history to indirectly influence these functional features. Considering the estimates of the thermal tolerance range and warming tolerance, thermoconformer lizards are likely to be more vulnerable and at greater risk of extinction due to global warming than thermoregulators. The latter, more associated with open environments, seem to take advantage of their lower vulnerability and occur in both habitat types across the transition, potentially out-competing and further increasing the risk of extinction and vulnerability of forest-adapted thermoconformer lizards in these transitional areas.

Keywords

References

  1. Am Nat. 2004 Mar;163(3):429-41 [PMID: 15026978]
  2. Glob Chang Biol. 2020 Dec;26(12):7036-7044 [PMID: 33006792]
  3. J Comp Physiol B. 2014 Jan;184(1):5-21 [PMID: 23989339]
  4. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6668-72 [PMID: 18458348]
  5. Science. 1987 Jan 9;235(4785):167-71 [PMID: 17778629]
  6. Bioscience. 2018 Nov 1;68(11):873-884 [PMID: 30464352]
  7. PLoS Biol. 2010 Apr 27;8(4):e1000357 [PMID: 20463950]
  8. Q Rev Biol. 1976 Sep;51(3):363-84 [PMID: 981504]
  9. Science. 2010 May 14;328(5980):894-9 [PMID: 20466932]
  10. PLoS One. 2017 Feb 22;12(2):e0171540 [PMID: 28225774]
  11. Biol Lett. 2013 Jan 16;9(2):20121056 [PMID: 23325735]
  12. Science. 2003 Jan 10;299(5604):241-4 [PMID: 12522248]
  13. Ecology. 2011 Apr;92(4):903-14 [PMID: 21661553]
  14. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6347-52 [PMID: 24733937]
  15. PLoS One. 2018 Mar 7;13(3):e0192834 [PMID: 29513695]
  16. J Exp Zool A Ecol Integr Physiol. 2021 Jan;335(1):13-44 [PMID: 32638552]
  17. Ecol Lett. 2013 Dec;16(12):1470-9 [PMID: 24118740]
  18. Proc Biol Sci. 2009 Jun 7;276(1664):1939-48 [PMID: 19324762]
  19. An Acad Bras Cienc. 2019;91(suppl 1):e20190080 [PMID: 31017189]
  20. PLoS One. 2017 Oct 27;12(10):e0187142 [PMID: 29077763]
  21. Ecography. 2020 May;43(5):714-723 [PMID: 33304029]
  22. J Exp Zool A Ecol Integr Physiol. 2021 Jan;335(1):173-194 [PMID: 32970931]
  23. Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1665-79 [PMID: 22566674]
  24. PLoS One. 2020 Jun 2;15(6):e0233881 [PMID: 32484844]
  25. Ecol Lett. 2009 Jul;12(7):693-715 [PMID: 19473217]
  26. PLoS One. 2011 Mar 10;6(3):e17476 [PMID: 21423747]
  27. J Therm Biol. 2018 Apr;73:50-60 [PMID: 29549991]
  28. Ecology. 2010 Jan;91(1):299-305 [PMID: 20380219]

MeSH Term

Animals
Lizards
Microclimate
Rainforest
Grassland
Brazil
Global Warming

Word Cloud

Created with Highcharts 10.0.0speciesfunctionaltransitionlizardsenvironmentalcommunityvulnerabilitythermalstructureEnvironmentalinfluencecommunitiesvariationswarmingextinctiontolerancelocalmicroclimatetemperaturesdifferentstrategiesoccurrenceglobaltypesareastwotraitsmicroclimatesestimatedremotesensingpatternthermoconformerriskheterogeneityposessignificantcharacteristicsscaleszonessavanna-forestborderscanactregionsecologicaltensionsubjectedsharpectothermicorganismsdirectlyphysiologicalcapabilitiesusethermoregulationproducevariedresponsesclimaticconditionsturnaffectdynamicscontextvariousconferwellrisksassessunderstandrelationshipslizardforest-savannanationalparkssouthwesternAmazonsampledcharacterizedinvestigatedvariationshapedpredictorslocallyvegetationfoundstronglypredictedcanopysurfacereflectancevaluesobtainedvariablesimportantfactoraffectingecothermaldemonstratedwithintaxonomichierarchyfamilylevelmayindicatetendencyevolutionaryhistoryindirectlyfeaturesConsideringestimatesrangelikelyvulnerablegreaterduethermoregulatorslatterassociatedopenenvironmentsseemtakeadvantageloweroccurhabitatacrosspotentiallyout-competingincreasingforest-adaptedtransitionalrolegradientsstructuringgroupsrainforest-savannaareaAmazoniaClimatechangeConservationLandsatMicroclimateThermalecology

Similar Articles

Cited By