[Progress in the analysis of hemolysis and coagulation models for interventional micro-axial flow blood pumps].

Shangting Wang, Hualin Fu, Zhexin Lu, Ming Yang
Author Information
  1. Shangting Wang: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
  2. Hualin Fu: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
  3. Zhexin Lu: Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai 201620, P. R. China.
  4. Ming Yang: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Abstract

Interventional micro-axial flow blood pump is widely used as an effective treatment for patients with cardiogenic shock. Hemolysis and coagulation are vital concerns in the clinical application of interventional micro-axial flow pumps. This paper reviewed hemolysis and coagulation models for micro-axial flow blood pumps. Firstly, the structural characteristics of commercial interventional micro-axial flow blood pumps and issues related to clinical applications were introduced. Then the basic mechanisms of hemolysis and coagulation were used to study the factors affecting erythrocyte damage and platelet activation in interventional micro-axial flow blood pumps, focusing on the current models of hemolysis and coagulation on different scales (macroscopic, mesoscopic, and microscopic). Since models at different scales have different perspectives on the study of hemolysis and coagulation, a comprehensive analysis combined with multi-scale models is required to fully consider the influence of complex factors of interventional pumps on hemolysis and coagulation.

Keywords

References

  1. Artif Organs. 2001 May;25(5):341-7 [PMID: 11403662]
  2. J Am Coll Cardiol. 2022 May 17;79(19):1949-1962 [PMID: 35550692]
  3. J R Soc Interface. 2021 Feb;18(175):20200834 [PMID: 33530862]
  4. PLoS One. 2023 Feb 6;18(2):e0281424 [PMID: 36745608]
  5. Front Cardiovasc Med. 2022 Mar 23;9:856870 [PMID: 35402561]
  6. Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202209469 [PMID: 35922374]
  7. Ann Biomed Eng. 2011 Jun;39(6):1632-42 [PMID: 21298343]
  8. ASAIO J. 2004 Sep-Oct;50(5):418-23 [PMID: 15497379]
  9. Thromb Haemost. 1985 Aug 30;54(2):381-6 [PMID: 2934855]
  10. Cardiovasc Eng Technol. 2022 Aug;13(4):638-649 [PMID: 35031981]
  11. Artif Organs. 2017 Sep;41(9):E80-E91 [PMID: 28044355]
  12. Artif Organs. 2017 Jul;41(7):603-621 [PMID: 28643335]
  13. Bioengineering (Basel). 2022 May 27;9(6): [PMID: 35735478]
  14. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Dec 25;37(6):1000-1011 [PMID: 33369339]
  15. Ann Transl Med. 2020 Jul;8(13):829 [PMID: 32793674]
  16. Heart Lung Circ. 2021 Apr;30(4):577-584 [PMID: 33039280]
  17. Front Cardiovasc Med. 2023 Mar 08;10:1140153 [PMID: 36970357]
  18. Cell Mol Bioeng. 2014 Dec 1;7(4):552-574 [PMID: 25530818]
  19. J R Soc Interface. 2008 Jul 6;5(24):705-22 [PMID: 17925274]
  20. Biomech Model Mechanobiol. 2021 Jun;20(3):1013-1030 [PMID: 33782796]
  21. RSC Adv. 2021 Feb 10;11(12):6958-6971 [PMID: 35423203]
  22. Expert Rev Med Devices. 2022 Jan;19(1):1-10 [PMID: 34894975]
  23. Int J Artif Organs. 1990 May;13(5):300-6 [PMID: 2365485]
  24. Biomech Model Mechanobiol. 2023 Apr;22(2):401-416 [PMID: 36441414]
  25. ASAIO J. 2020 Nov/Dec;66(10):1142-1151 [PMID: 33136602]
  26. Comput Biol Med. 2022 Dec;151(Pt A):106271 [PMID: 36347061]
  27. ASAIO J. 2016 Jan-Feb;62(1):11-4 [PMID: 26418208]
  28. Biomech Model Mechanobiol. 2020 Jun;19(3):943-955 [PMID: 31754949]
  29. Transfus Med Rev. 2023 Apr;37(2):150723 [PMID: 37031086]
  30. Curr Opin Biomed Eng. 2021 Dec;20: [PMID: 35071850]
  31. Front Physiol. 2023 Jul 05;14:1181423 [PMID: 37476687]
  32. Pharmacotherapy. 2021 Nov;41(11):932-942 [PMID: 34597429]
  33. Biomech Model Mechanobiol. 2019 Jun;18(3):665-679 [PMID: 30604300]
  34. Biomaterials. 2004 Nov;25(26):5681-703 [PMID: 15147815]
  35. World J Cardiol. 2020 Jul 26;12(7):334-341 [PMID: 32843935]
  36. Front Physiol. 2023 May 11;14:1169905 [PMID: 37250127]
  37. Artif Organs. 2020 Aug;44(8):E348-E368 [PMID: 32017130]

MeSH Term

Hemolysis
Humans
Blood Coagulation
Heart-Assist Devices
Erythrocytes
Shock, Cardiogenic
Platelet Activation
Equipment Design

Word Cloud

Created with Highcharts 10.0.0flowcoagulationmicro-axialbloodhemolysisinterventionalpumpsmodelsdifferentpumpusedHemolysisclinicalstudyfactorsscalesanalysisInterventionalwidelyeffectivetreatmentpatientscardiogenicshockvitalconcernsapplicationpaperreviewedFirstlystructuralcharacteristicscommercialissuesrelatedapplicationsintroducedbasicmechanismsaffectingerythrocytedamageplateletactivationfocusingcurrentmacroscopicmesoscopicmicroscopicSinceperspectivescomprehensivecombinedmulti-scalerequiredfullyconsiderinfluencecomplex[Progresspumps]AxialCoagulationMulti-scalemodel

Similar Articles

Cited By