Spatially Resolved Association of Structural Biomarkers on Retinal Function in Non-Exudative Age-Related Macular Degeneration Over 4 Years.

Marlene Sa��mannshausen, Senem D��ngelci, Marc Vaisband, Leon von der Emde, Kenneth R Sloan, Jan Hasenauer, Frank G Holz, Steffen Schmitz-Valckenberg, Thomas Ach
Author Information
  1. Marlene Sa��mannshausen: Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
  2. Senem D��ngelci: Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
  3. Marc Vaisband: Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
  4. Leon von der Emde: Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
  5. Kenneth R Sloan: Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, United States.
  6. Jan Hasenauer: Department of Internal Medicine III With Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg, Austria.
  7. Frank G Holz: Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
  8. Steffen Schmitz-Valckenberg: Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
  9. Thomas Ach: Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.

Abstract

Purpose: To longitudinally assess the impact of high-risk structural biomarkers for natural disease progression in non-exudative age-related macular degeneration (AMD) on spatially resolved mesopic and scotopic fundus-controlled perimetry testing.
Methods: Multimodal retinal imaging data and fundus-controlled perimetry stimuli points were semiautomatically registered according to landmark correspondences at each annual visit over a period of up to 4 years. The presence of sub-RPE drusen, subretinal drusenoid deposits, pigment epithelium detachments (PEDs), hyper-reflective foci (HRF), vitelliform lesions, refractile deposits, and incomplete RPE and outer retinal atrophy (iRORA) and complete RPE and outer retinal atrophy (cRORA) were graded at each stimulus position and visit. Localized retinal layer thicknesses were extracted. Mixed-effect models were used for structure-function correlation.
Results: Fifty-four eyes of 49 patients with non-exudative AMD (mean age, 70.7 �� 9.1 years) and 27 eyes of 27 healthy controls (mean age, 63.4 �� 8.9 years) were included. During study course, presence of PED had the highest functional impact with a mean estimated loss of -1.30 dB (P < 0.001) for mesopic and -1.23 dB (P < 0.001) for scotopic testing, followed by HRF with -0.89 dB (mesopic, P = 0.001) and -0.87 dB (scotopic, P = 0.005). Subretinal drusenoid deposits were associated with a stronger visual impairment (mesopic, -0.38 dB; P = 0.128; scotopic, -0.37 dB; P = 0.172) compared with sub-RPE drusen (-0.22 dB, P = 0.0004; -0.18 dB, P = 0.006). With development of c-RORA, scotopic retinal sensitivity further significantly decreased (-2.15 dB; P = 0.02). Thickening of the RPE-drusen-complex and thinning of the outer nuclear layer negatively impacted spatially resolved retinal sensitivity.
Conclusions: The presence of PED and HRF had the greatest prognostic impact on progressive point-wise sensitivity losses. Higher predominant rod than cone-mediated localized retinal sensitivity losses with early signs of retinal atrophy development indicate photoreceptor preservation as a potential therapeutic target for future interventional AMD trials.

References

  1. Nat Rev Dis Primers. 2021 May 6;7(1):31 [PMID: 33958600]
  2. Am J Ophthalmol. 2016 May;165:65-77 [PMID: 26940163]
  3. Transl Vis Sci Technol. 2022 Jul 8;11(7):17 [PMID: 35861686]
  4. Invest Ophthalmol Vis Sci. 2018 Mar 1;59(3):1599-1608 [PMID: 29625486]
  5. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  6. Lancet. 2012 May 5;379(9827):1728-38 [PMID: 22559899]
  7. Ophthalmology. 2014 Aug;121(8):1572-8 [PMID: 24755005]
  8. Invest Ophthalmol Vis Sci. 2000 Jul;41(8):2015-8 [PMID: 10892836]
  9. Ophthalmol Sci. 2022 Jun;2(2): [PMID: 35662803]
  10. JAMA Ophthalmol. 2020 Jul 1;138(7):740-747 [PMID: 32379287]
  11. Ophthalmol Retina. 2023 May;7(5):420-430 [PMID: 36563964]
  12. Invest Ophthalmol Vis Sci. 2017 May 1;58(6):BIO211-BIO226 [PMID: 28785769]
  13. Transl Vis Sci Technol. 2020 Dec 28;9(13):43 [PMID: 33442497]
  14. Retina. 2014 Aug;34(8):1524-30 [PMID: 24736463]
  15. Br J Ophthalmol. 2021 Feb;105(2):239-245 [PMID: 32269061]
  16. Transl Vis Sci Technol. 2017 Jun 05;6(3):15 [PMID: 28593103]
  17. Invest Ophthalmol Vis Sci. 2018 Jul 2;59(8):3431-3439 [PMID: 30025092]
  18. Retina. 2020 Apr;40(4):618-631 [PMID: 31599795]
  19. Ophthalmology. 2013 Apr;120(4):844-51 [PMID: 23332590]
  20. Ophthalmology. 2014 Jul;121(7):1445-52 [PMID: 24629618]
  21. Sci Rep. 2021 Aug 16;11(1):16577 [PMID: 34400749]
  22. JAMA Ophthalmol. 2015 Jun;133(6):690-7 [PMID: 25811917]
  23. Trials. 2020 Jul 18;21(1):659 [PMID: 32682441]
  24. Invest Ophthalmol Vis Sci. 2020 Jul 1;61(8):46 [PMID: 32729911]
  25. Transl Vis Sci Technol. 2017 Jul 13;6(4):7 [PMID: 28713647]
  26. Invest Ophthalmol Vis Sci. 2022 Oct 3;63(11):12 [PMID: 36251316]
  27. BMC Ophthalmol. 2020 May 19;20(1):196 [PMID: 32429847]
  28. Ophthalmology. 2020 Mar;127(3):394-409 [PMID: 31708275]
  29. Retina. 2015 May;35(5):859-65 [PMID: 25768253]
  30. Invest Ophthalmol Vis Sci. 2020 Aug 3;61(10):19 [PMID: 32780863]
  31. Invest Ophthalmol Vis Sci. 2017 Apr 1;58(4):2198-2206 [PMID: 28418494]
  32. Invest Ophthalmol Vis Sci. 2012 Jan 05;53(1):53-61 [PMID: 22039246]
  33. Lancet. 2018 Sep 29;392(10153):1147-1159 [PMID: 30303083]
  34. Am J Ophthalmol. 2016 Dec;172:28-38 [PMID: 27640006]
  35. Retina. 2010 Oct;30(9):1441-54 [PMID: 20924263]
  36. Eye (Lond). 2019 Dec;33(12):1871-1876 [PMID: 31267093]
  37. Invest Ophthalmol Vis Sci. 2018 Aug 1;59(10):4154-4161 [PMID: 30105370]
  38. Ophthalmol Retina. 2021 Sep;5(9):855-867 [PMID: 33348085]
  39. Sci Rep. 2019 Jul 31;9(1):11132 [PMID: 31366903]
  40. Retina. 2013 Oct;33(9):1800-8 [PMID: 23764969]
  41. Retina. 2018 Feb;38(2):245-252 [PMID: 28166160]
  42. Ophthalmol Retina. 2020 Nov;4(11):1059-1068 [PMID: 32389889]
  43. Retina. 2020 Jan;40(1):169-180 [PMID: 30300264]
  44. Invest Ophthalmol Vis Sci. 2022 Oct 03;63(11):24 [PMID: 36306145]
  45. Retina. 2021 Apr 1;41(4):686-693 [PMID: 33009219]
  46. Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1511-1518 [PMID: 30994862]
  47. Ophthalmology. 2013 May;120(5):1038-45 [PMID: 23352193]
  48. Retina. 2019 Dec;39(12):2378-2383 [PMID: 30180145]
  49. Invest Ophthalmol Vis Sci. 2013 Mar 05;54(3):1603-12 [PMID: 23361506]
  50. Eye (Lond). 2023 Dec;37(17):3582-3588 [PMID: 37170011]
  51. Surv Ophthalmol. 2016 Sep-Oct;61(5):521-37 [PMID: 26994868]

Grants

  1. R01 EY027948/NEI NIH HHS

MeSH Term

Humans
Female
Aged
Male
Middle Aged
Tomography, Optical Coherence
Visual Field Tests
Disease Progression
Visual Acuity
Visual Fields
Macular Degeneration
Retinal Drusen
Biomarkers
Follow-Up Studies
Retinal Pigment Epithelium
Night Vision
Retina
Aged, 80 and over
Fluorescein Angiography

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0dBP0retinal=-0scotopicmesopicsensitivityimpactAMD4presencedepositsHRFouteratrophymean001non-exudativespatiallyresolvedfundus-controlledperimetrytestingvisitsub-RPEdrusendrusenoidRPElayereyesage��27PED-1<developmentlossesPurpose:longitudinallyassesshigh-riskstructuralbiomarkersnaturaldiseaseprogressionage-relatedmaculardegenerationMethods:MultimodalimagingdatastimulipointssemiautomaticallyregisteredaccordinglandmarkcorrespondencesannualperiodyearssubretinalpigmentepitheliumdetachmentsPEDshyper-reflectivefocivitelliformlesionsrefractileincompleteiRORAcompletecRORAgradedstimuluspositionLocalizedthicknessesextractedMixed-effectmodelsusedstructure-functioncorrelationResults:Fifty-four49patients70791 yearshealthycontrols6389 yearsincludedstudycoursehighestfunctionalestimatedloss3023followed8987005Subretinalassociatedstrongervisualimpairment3812837172compared22000418006c-RORAsignificantlydecreased-21502ThickeningRPE-drusen-complexthinningnuclearnegativelyimpactedConclusions:greatestprognosticprogressivepoint-wiseHigherpredominantrodcone-mediatedlocalizedearlysignsindicatephotoreceptorpreservationpotentialtherapeutictargetfutureinterventionaltrialsSpatiallyResolvedAssociationStructuralBiomarkersRetinalFunctionNon-ExudativeAge-RelatedMacularDegenerationYears

Similar Articles

Cited By