Cold Spot SCANNER: Colab Notebook for predicting cold spots in protein-protein interfaces.

Sagara N S Gurusinghe, Julia M Shifman
Author Information
  1. Sagara N S Gurusinghe: Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
  2. Julia M Shifman: Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. jshifman@mail.huji.ac.il.

Abstract

BACKGROUND: Protein-protein interactions (PPIs) are conveyed through binding interfaces or surface patches on proteins that become buried upon binding. Structural and biophysical analysis of many protein-protein interfaces revealed certain unique features of these surfaces that determine the energetics of interactions and play a critical role in protein evolution. One of the significant aspects of binding interfaces is the presence of binding hot spots, where mutations are highly deleterious for binding. Conversely, binding cold spots are positions occupied by suboptimal amino acids and several mutations in such positions could lead to affinity enhancement. While there are many software programs for identification of hot spot positions, there is currently a lack of software for cold spot detection.
RESULTS: In this paper, we present Cold Spot SCANNER, a Colab Notebook, which scans a PPI binding interface and identifies cold spots resulting from cavities, unfavorable charge-charge, and unfavorable charge-hydrophobic interactions. The software offers a Py3DMOL-based interface that allows users to visualize cold spots in the context of the protein structure and generates a zip file containing the results for easy download.
CONCLUSIONS: Cold spot identification is of great importance to protein engineering studies and provides a useful insight into protein evolution. Cold Spot SCANNER is open to all users without login requirements and can be accessible at: https://colab.
RESEARCH: google.com/github/sagagugit/Cold-Spot-Scanner/blob/main/Cold_Spot_Scanner.ipynb .

Keywords

References

  1. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8705-10 [PMID: 27436899]
  2. Trends Biochem Sci. 2016 Sep;41(9):739-745 [PMID: 27477052]
  3. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W333-9 [PMID: 23723246]
  4. J Hematol Oncol. 2020 Mar 30;13(1):26 [PMID: 32228680]
  5. Nucleic Acids Res. 2019 Jul 2;47(W1):W338-W344 [PMID: 31114883]
  6. Hum Mutat. 2012 Feb;33(2):359-63 [PMID: 22072597]
  7. Curr Opin Struct Biol. 2005 Aug;15(4):441-6 [PMID: 15993577]
  8. Protein Sci. 2022 Oct;31(10):e4435 [PMID: 36173158]
  9. Science. 1995 Jan 20;267(5196):383-6 [PMID: 7529940]
  10. J Mol Biol. 1998 Jul 3;280(1):1-9 [PMID: 9653027]
  11. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83 [PMID: 17452350]
  12. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W382-8 [PMID: 15980494]
  13. Chem Rev. 2018 Feb 28;118(4):1691-1741 [PMID: 29319301]
  14. Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10342-E10351 [PMID: 30322927]
  15. J Chem Phys. 2015 Dec 28;143(24):243149 [PMID: 26723634]
  16. Proteins. 2019 Feb;87(2):110-119 [PMID: 30417935]
  17. PLoS One. 2014 Apr 07;9(4):e93712 [PMID: 24710006]
  18. Molecules. 2022 Sep 21;27(19): [PMID: 36234723]
  19. Curr Opin Chem Biol. 2022 Aug;69:102169 [PMID: 35749929]
  20. Methods Enzymol. 2013;523:41-59 [PMID: 23422425]
  21. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14116-21 [PMID: 12381794]
  22. Biochem Soc Trans. 2013 Oct;41(5):1166-9 [PMID: 24059503]
  23. Proteomics. 2012 May;12(10):1478-98 [PMID: 22711592]
  24. J Mol Biol. 2017 Feb 3;429(3):426-434 [PMID: 27899282]
  25. Bioinformatics. 2014 Feb 01;30(3):335-42 [PMID: 24281696]
  26. J Am Chem Soc. 2021 Oct 20;143(41):17261-17275 [PMID: 34609866]
  27. Cell Rep. 2015 Oct 27;13(4):703-711 [PMID: 26489469]
  28. Nature. 2016 May 5;533(7601):58-63 [PMID: 27120167]

Grants

  1. 3486/20/Israel Science Foundation
  2. Pilot Project Grant (517)/Instruct

MeSH Term

Proteins
Software
Protein Interaction Mapping
Protein Binding
Protein Conformation
Models, Molecular
Binding Sites
Hydrophobic and Hydrophilic Interactions

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0bindingspotscoldColdinteractionsinterfacesproteinpositionssoftwarespotSpotinterfacemanyprotein-proteinevolutionhotmutationsaffinityidentificationSCANNERColabNotebookunfavorableusersBindingBACKGROUND:Protein-proteinPPIsconveyedsurfacepatchesproteinsbecomeburieduponStructuralbiophysicalanalysisrevealedcertainuniquefeaturessurfacesdetermineenergeticsplaycriticalroleOnesignificantaspectspresencehighlydeleteriousConverselyoccupiedsuboptimalaminoacidsseveralleadenhancementprogramscurrentlylackdetectionRESULTS:paperpresentscansPPIidentifiesresultingcavitiescharge-chargecharge-hydrophobicoffersPy3DMOL-basedallowsvisualizecontextstructuregenerateszipfilecontainingresultseasydownloadCONCLUSIONS:greatimportanceengineeringstudiesprovidesusefulinsightopenwithoutloginrequirementscanaccessibleat:https://colabRESEARCH:googlecom/github/sagagugit/Cold-Spot-Scanner/blob/main/Cold_Spot_ScanneripynbSCANNER:predictingCavitiesProtein–protein

Similar Articles

Cited By