Morphological Species Delimitation in The Western Pond Turtle (): Can Machine Learning Methods Aid in Cryptic Species Identification?

R W Burroughs, J F Parham, B L Stuart, P D Smits, K D Angielczyk
Author Information
  1. R W Burroughs: Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA.
  2. J F Parham: Department of Geological Sciences, California State University, Fullerton, CA 92834, USA.
  3. B L Stuart: Section of Research and Collections, NC Museum of Natural Sciences, Raleigh, NC 27601, USA.
  4. P D Smits: 952 NW 60th St., Seattle, Washington, WA 98107, USA.
  5. K D Angielczyk: Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA.

Abstract

As the discovery of cryptic species has increased in frequency, there has been an interest in whether geometric morphometric data can detect fine-scale patterns of variation that can be used to morphologically diagnose such species. We used a combination of geometric morphometric data and an ensemble of five supervised machine learning methods (MLMs) to investigate whether plastron shape can differentiate two putative cryptic turtle species, and has been the focus of considerable research due to its biogeographic distribution and conservation status. Despite this work, reliable morphological diagnoses for its two species are still lacking. We validated our approach on two datasets, one consisting of eight morphologically disparate emydid species, the other consisting of two subspecies of (). The validation tests returned near-perfect classification rates, demonstrating that plastron shape is an effective means for distinguishing taxonomic groups of emydids via MLMs. In contrast, the same methods did not return high classification rates for a set of alternative phylogeographic and morphological binning schemes in . All classification hypotheses performed poorly relative to the validation datasets and no single hypothesis was unequivocally supported for . Two hypotheses had machine learning performance that was marginally better than our remaining hypotheses. In both cases, those hypotheses favored a two-species split between and specimens, lending tentative morphological support to the hypothesis of two species. However, the machine learning results also underscore that as a whole has lower levels of plastral variation than other turtles within Emydidae, but the reason for this morphological conservatism is unclear.

Associated Data

Dryad | 10.5061/dryad.wm37pvmv1

References

  1. Mol Ecol. 2005 Jun;14(7):2047-64 [PMID: 15910326]
  2. Mol Phylogenet Evol. 2002 Mar;22(3):388-98 [PMID: 11884163]
  3. Evolution. 2011 Feb;65(2):377-94 [PMID: 20812973]
  4. Front Zool. 2010 May 25;7:16 [PMID: 20500846]
  5. J Morphol. 2011 Oct;272(10):1192-203 [PMID: 21630321]
  6. Integr Org Biol. 2024 Apr 02;6(1):obae010 [PMID: 38689939]
  7. Syst Biol. 2007 Dec;56(6):879-86 [PMID: 18027281]
  8. Proc Biol Sci. 2008 Jan 7;275(1630):71-6 [PMID: 17956847]
  9. Syst Biol. 2007 Dec;56(6):887-95 [PMID: 18027282]
  10. PLoS One. 2011;6(7):e21460 [PMID: 21814545]
  11. Proc Biol Sci. 2012 May 7;279(1734):1806-14 [PMID: 22130600]
  12. Syst Biol. 2010 Jul;59(4):400-14 [PMID: 20547777]
  13. Evolution. 2006 Mar;60(3):563-72 [PMID: 16637501]
  14. Proc Biol Sci. 2011 Feb 22;278(1705):490-2; discussion 493-5 [PMID: 20961901]
  15. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13892-7 [PMID: 23924610]
  16. PLoS One. 2021 Apr 15;16(4):e0249593 [PMID: 33857176]
  17. Anat Rec (Hoboken). 2015 Jan;298(1):5-28 [PMID: 25339616]
  18. Syst Biol. 2009 Feb;58(1):1-20 [PMID: 20525565]
  19. Proc Natl Acad Sci U S A. 2023 Oct 3;120(40):e2302424120 [PMID: 37748058]
  20. Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1607-1612 [PMID: 28137871]
  21. Int J Legal Med. 2015 May;129(3):651-9 [PMID: 25186617]
  22. Integr Comp Biol. 2008 Dec;48(6):769-87 [PMID: 21669831]
  23. Mol Phylogenet Evol. 2013 Apr;67(1):176-87 [PMID: 23353072]
  24. Trends Ecol Evol. 2007 Mar;22(3):148-55 [PMID: 17129636]
  25. Nat Rev Mol Cell Biol. 2022 Jan;23(1):40-55 [PMID: 34518686]
  26. Am J Phys Anthropol. 2007 Sep;134(1):24-35 [PMID: 17503448]
  27. Mol Ecol. 2013 Sep;22(17):4369-83 [PMID: 23855767]
  28. Cancer Inform. 2014 Dec 09;13(Suppl 1):145-58 [PMID: 25574125]
  29. Mol Phylogenet Evol. 2023 Dec;189:107939 [PMID: 37804960]
  30. Zoology (Jena). 2011 Sep;114(4):213-23 [PMID: 21820295]
  31. Neuroimage. 2018 Oct 15;180(Pt A):68-77 [PMID: 28655633]
  32. Mol Phylogenet Evol. 2016 Oct;103:85-97 [PMID: 27400630]
  33. Mol Ecol. 2018 Feb;27(3):613-635 [PMID: 29334414]
  34. Trends Ecol Evol. 2007 Aug;22(8):391-2 [PMID: 17573150]
  35. Mol Phylogenet Evol. 2020 Apr;145:106722 [PMID: 31874235]
  36. Genet Mol Res. 2009 Feb 25;8(1):207-14 [PMID: 19283687]
  37. Mol Ecol Resour. 2017 Sep;17(5):1003-1008 [PMID: 28118515]
  38. Mol Ecol. 2008 Jan;17(2):570-81 [PMID: 17971089]
  39. Syst Biol. 2010 Jan;59(1):59-73 [PMID: 20525620]
  40. Mol Ecol. 2014 May;23(9):2228-41 [PMID: 24673803]
  41. J R Soc Interface. 2018 Sep 26;15(146): [PMID: 30257926]
  42. Mol Ecol. 2010 Feb;19(3):542-56 [PMID: 20051011]
  43. Syst Biol. 2006 Aug;55(4):595-609 [PMID: 16967577]
  44. Am J Biol Anthropol. 2022 Aug;178 Suppl 74:181-210 [PMID: 36790612]
  45. Syst Biol. 2010 Oct;59(5):491-503 [PMID: 20693311]
  46. Mol Phylogenet Evol. 2015 Nov;92:266-79 [PMID: 26162672]
  47. Evolution. 2019 Apr;73(4):720-734 [PMID: 30820948]
  48. Proc Biol Sci. 2010 Oct 22;277(1697):3071-7 [PMID: 20519219]
  49. Trends Ecol Evol. 2018 Mar;33(3):153-163 [PMID: 29241941]
  50. Syst Biol. 2023 Aug 7;72(4):885-911 [PMID: 37074804]
  51. Proc Natl Acad Sci U S A. 2010 May 18;107(20):9264-9 [PMID: 20439743]
  52. Biol Lett. 2006 Sep 22;2(3):470-4 [PMID: 17148433]
  53. Evol Bioinform Online. 2011;7:55-9 [PMID: 21698091]
  54. BMC Evol Biol. 2007 Jul 19;7:121 [PMID: 17640383]
  55. Front Zool. 2022 Feb 22;19(1):8 [PMID: 35193622]
  56. Ecol Evol. 2019 Sep 16;9(18):10070-10084 [PMID: 31624538]
  57. PeerJ. 2019 Aug 22;7:e7476 [PMID: 31497387]
  58. Syst Biol. 2020 Jan 1;69(1):184-193 [PMID: 31180508]
  59. Evolution. 2018 Sep;72(9):1933-1949 [PMID: 30039566]
  60. Evolution. 2005 Nov;59(11):2460-72 [PMID: 16396186]
  61. Annu Rev Entomol. 2010;55:421-38 [PMID: 19737081]

Grants

  1. K12 GM102778/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0speciestwomorphologicalhypothesescanmachinelearningclassificationcrypticwhethergeometricmorphometricdatavariationusedmorphologicallymethodsMLMsplastronshapedatasetsconsistingvalidationrateshypothesisSpeciesdiscoveryincreasedfrequencyinterestdetectfine-scalepatternsdiagnosecombinationensemblefivesupervisedinvestigatedifferentiateputativeturtlefocusconsiderableresearchduebiogeographicdistributionconservationstatusDespiteworkreliablediagnosesstilllackingvalidatedapproachoneeightdisparateemydidsubspeciestestsreturnednear-perfectdemonstratingeffectivemeansdistinguishingtaxonomicgroupsemydidsviacontrastreturnhighsetalternativephylogeographicbinningschemesperformedpoorlyrelativesingleunequivocallysupportedTwoperformancemarginallybetterremainingcasesfavoredtwo-speciessplitspecimenslendingtentativesupportHoweverresultsalsounderscorewholelowerlevelsplastralturtleswithinEmydidaereasonconservatismunclearMorphologicalDelimitationWesternPondTurtle:CanMachineLearningMethodsAidCrypticIdentification?

Similar Articles

Cited By