MOF/graphene oxide based composites in smart supercapacitors: a comprehensive review on the electrochemical evaluation and material development for advanced energy storage devices.

Sanjeev Gautam, Shruti Rialach, Surinder Paul, Navdeep Goyal
Author Information
  1. Sanjeev Gautam: Advanced Functional Materials Lab, Dr S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University Chandigarh-160014 India sgautam@pu.ac.in +91 97797 13212. ORCID
  2. Shruti Rialach: Department of Physics and Astronomical Science, Central University of Himachal Pradesh Dharamshala 176215 India. ORCID
  3. Surinder Paul: Department of Physics and Astronomical Science, Central University of Himachal Pradesh Dharamshala 176215 India.
  4. Navdeep Goyal: Department of Physics, Panjab University Chandigarh-160014 India.

Abstract

The surge in interest surrounding energy storage solutions, driven by the demand for electric vehicles and the global energy crisis, has spotlighted the effectiveness of carbon-based supercapacitors in meeting high-power requirements. Concurrently, metal-organic frameworks (MOFs) have gained attention as a template for their integration with graphene oxide (GO) in composite materials which have emerged as a promising avenue for developing high-power supercapacitors, elevating smart supercapacitor efficiency, cyclic stability, and durability, providing crucial insights for overcoming contemporary energy storage obstacles. The identified combination leverages the strengths of both materials, showcasing significant potential for advancing energy storage technologies in a sustainable and efficient manner. In this research, an in-depth review has been presented, in which properties, rationale and integration of MOF/GO composites have been critically examined. Various fabrication techniques have been thoroughly analyzed, emphasizing the specific attributes of MOFs, such as high surface area and modifiable porosity, in tandem with the conductive and stabilizing features of graphene oxide. Electrochemical characterizations and physicochemical mechanisms underlying MOF/GO composites have been examined, emphasizing their synergistic interaction, leading to superior electrical conductivity, mechanical robustness, and energy storage capacity. The article concludes by identifying future research directions, emphasizing sustainable production, material optimization, and integration strategies to address the persistent challenges in the field of energy storage. In essence, this research article aims to offer a concise and insightful resource for researchers engaged in overcoming the pressing energy storage issues of our time through the exploration of MOF/GO composites in smart supercapacitors.

References

  1. J Hazard Mater. 2019 Feb 5;363:138-151 [PMID: 30308352]
  2. Membranes (Basel). 2020 Oct 21;10(10): [PMID: 33096685]
  3. Chemosphere. 2016 Oct;160:30-44 [PMID: 27355417]
  4. ACS Appl Mater Interfaces. 2019 Dec 11;11(49):46044-46053 [PMID: 31718126]
  5. ACS Nano. 2013 Jan 22;7(1):174-82 [PMID: 23249211]
  6. ACS Omega. 2021 Nov 12;6(46):31184-31195 [PMID: 34841161]
  7. Small. 2011 Jul 18;7(14):1876-902 [PMID: 21630440]
  8. Nanoscale Adv. 2020 May 4;2(7):2925-2942 [PMID: 36132404]
  9. RSC Adv. 2018 Jan 17;8(7):3462-3469 [PMID: 35542948]
  10. Adv Mater. 2017 Dec;29(45): [PMID: 28837750]
  11. Sci Am. 1971 Sep;225(3):135-42 passim [PMID: 5569018]
  12. Adv Mater. 2020 Jun;32(24):e1907254 [PMID: 32390218]
  13. Chem Sci. 2021 Mar 22;12(16):5737-5766 [PMID: 34168802]
  14. Sci Rep. 2022 Mar 4;12(1):3611 [PMID: 35246573]
  15. Adv Mater. 2013 Nov 6;25(41):5965-70 [PMID: 23956005]
  16. Environ Technol. 2021 Feb;42(5):694-704 [PMID: 31293218]
  17. Nanoscale Res Lett. 2018 May 24;13(1):163 [PMID: 29797190]
  18. J Colloid Interface Sci. 2023 Jan 15;630(Pt B):817-827 [PMID: 36368130]
  19. Heliyon. 2024 Mar 15;10(6):e28066 [PMID: 38524612]
  20. Nat Commun. 2020 Aug 11;11(1):3882 [PMID: 32782258]
  21. RSC Adv. 2020 Mar 12;10(18):10526-10539 [PMID: 35492922]
  22. Front Chem. 2022 Oct 07;10:996560 [PMID: 36277339]
  23. ACS Omega. 2023 Mar 15;8(12):10888-10898 [PMID: 37008133]
  24. J Colloid Interface Sci. 2022 May 15;614:130-137 [PMID: 35091142]
  25. Nanoscale. 2022 Feb 24;14(8):3269-3278 [PMID: 35166280]
  26. Nanomaterials (Basel). 2022 Sep 18;12(18): [PMID: 36145021]
  27. Dalton Trans. 2016 Sep 14;45(34):13311-6 [PMID: 27301715]
  28. Nat Mater. 2008 Nov;7(11):845-54 [PMID: 18956000]
  29. Small. 2018 Oct;14(43):e1800879 [PMID: 30009468]
  30. Front Chem. 2020 Jul 03;8:534 [PMID: 32719772]
  31. Chem Commun (Camb). 2015 Mar 18;51(22):4635-8 [PMID: 25690559]
  32. J Colloid Interface Sci. 2020 Mar 1;561:265-274 [PMID: 31767400]
  33. RSC Adv. 2019 Nov 7;9(62):36123-36135 [PMID: 35540587]
  34. ACS Appl Mater Interfaces. 2016 Feb;8(7):4724-9 [PMID: 26830192]
  35. Adv Sci (Weinh). 2022 Sep;9(25):e2106052 [PMID: 35843868]
  36. Nano Lett. 2010 Feb 10;10(2):708-14 [PMID: 20050691]
  37. Polymers (Basel). 2022 Jan 27;14(3): [PMID: 35160499]
  38. Renew Sustain Energy Rev. 2022 Apr;158:112135 [PMID: 35039746]
  39. Chem Soc Rev. 2018 Dec 7;47(23):8611-8638 [PMID: 30234863]
  40. ACS Appl Mater Interfaces. 2015 Feb 18;7(6):3655-64 [PMID: 25612667]
  41. Nanoscale. 2020 Sep 14;12(34):17649-17662 [PMID: 32820760]
  42. Dalton Trans. 2020 Mar 14;49(10):3304-3311 [PMID: 32101240]
  43. Adv Funct Mater. 2022 Sep 26;32(39):2204692 [PMID: 35942272]
  44. Sci Adv. 2017 Dec 01;3(12):eaap9252 [PMID: 29214220]
  45. ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16454-16468 [PMID: 33789423]
  46. ACS Omega. 2020 Jun 10;5(24):14242-14253 [PMID: 32596560]
  47. Nanomicro Lett. 2020 Oct 27;13(1):8 [PMID: 34138191]
  48. Adv Mater. 2015 Aug 26;27(32):4695-701 [PMID: 26178419]
  49. Environ Sci Pollut Res Int. 2017 Apr;24(10):9624-9634 [PMID: 28247275]
  50. Nano Lett. 2011 Dec 14;11(12):5165-72 [PMID: 21923166]
  51. Heliyon. 2022 Oct 05;8(10):e10936 [PMID: 36276714]
  52. Adv Mater. 2013 Dec 23;25(48):6985-90 [PMID: 24123419]
  53. Chem Commun (Camb). 2018 Sep 13;54(74):10499-10502 [PMID: 30159557]
  54. Int J Biol Macromol. 2023 Jan 15;225:1437-1448 [PMID: 36435468]

Word Cloud

Created with Highcharts 10.0.0energystoragecompositessupercapacitorsintegrationoxidesmartresearchMOF/GOemphasizinghigh-powerMOFsgraphenematerialsovercomingsustainablereviewexaminedarticlematerialsurgeinterestsurroundingsolutionsdrivendemandelectricvehiclesglobalcrisisspotlightedeffectivenesscarbon-basedmeetingrequirementsConcurrentlymetal-organicframeworksgainedattentiontemplateGOcompositeemergedpromisingavenuedevelopingelevatingsupercapacitorefficiencycyclicstabilitydurabilityprovidingcrucialinsightscontemporaryobstaclesidentifiedcombinationleveragesstrengthsshowcasingsignificantpotentialadvancingtechnologiesefficientmannerin-depthpresentedpropertiesrationalecriticallyVariousfabricationtechniquesthoroughlyanalyzedspecificattributeshighsurfaceareamodifiableporositytandemconductivestabilizingfeaturesElectrochemicalcharacterizationsphysicochemicalmechanismsunderlyingsynergisticinteractionleadingsuperiorelectricalconductivitymechanicalrobustnesscapacityconcludesidentifyingfuturedirectionsproductionoptimizationstrategiesaddresspersistentchallengesfieldessenceaimsofferconciseinsightfulresourceresearchersengagedpressingissuestimeexplorationMOF/graphenebasedsupercapacitors:comprehensiveelectrochemicalevaluationdevelopmentadvanceddevices

Similar Articles

Cited By