Antifungal mechanism of cell-free supernatant produced by and its efficacy for the control of pear Valsa canker.

Yang Zhang, Ying Lu, Zhaoyang Jin, Bo Li, Li Wu, Yujian He
Author Information
  1. Yang Zhang: School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
  2. Ying Lu: School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
  3. Zhaoyang Jin: School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
  4. Bo Li: School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
  5. Li Wu: School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
  6. Yujian He: School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.

Abstract

Introduction: Pear Valsa canker, caused by (), poses a major threat to pear production. We aimed to assess the effectiveness of the cell-free supernatant (CFS) produced by () to control the development of pear Valsa canker and reveal the inhibitory mechanism against the pathogenic fungi.
Results: Using morphological characteristics and phylogenetic analysis, the pathogen G1H was identified as , and the biocontrol fungus WJ561 was identified as . CFS derived from WJ561 exhibited strong inhibition of mycelial growth and was capable of reducing the pathogenicity of on pear leaves and twigs. Scanning electron microscopy (SEM) observations revealed deformations and shrinkages in the fungal hyphae treated with CFS. The CFS also destroyed the hyphal membranes leading to the leakage of cellular contents and an increase in the malondialdehyde (MDA) content. Additionally, CFS significantly inhibited the activities of catalase (CAT) and superoxide dismutase (SOD), and downregulated the expression of antioxidant defense-related genes in , causing the accumulation of reactive oxygen species (ROS). Artesunate, identified as the main component in CFS by liquid chromatograph-mass spectrometry (LC-MS), exhibited antifungal activity against .
Conclusion: Our findings demonstrate the promising potential of and its CFS in controlling pear Valsa canker. The primary inhibitory mechanism of CFS involves multiple processes, including membrane damage and negatively affecting enzymatic detoxification pathways, consequently leading to hyphal oxidative damage of . This study lays a theoretical foundation for the utilization of to control in practical production.

Keywords

References

  1. Mol Phylogenet Evol. 2003 May;27(2):302-13 [PMID: 12695093]
  2. Int J Mol Sci. 2023 Oct 23;24(20): [PMID: 37895155]
  3. Plant Dis. 2016 Dec;100(12):2394-2401 [PMID: 30686168]
  4. Front Microbiol. 2022 Aug 05;13:980022 [PMID: 35992680]
  5. Mol Pharm. 2023 Jan 2;20(1):290-302 [PMID: 36368878]
  6. J Appl Microbiol. 2021 Apr;130(4):1208-1216 [PMID: 32916018]
  7. J Fungi (Basel). 2022 Feb 01;8(2): [PMID: 35205907]
  8. Appl Environ Microbiol. 1995 Apr;61(4):1323-30 [PMID: 7747954]
  9. Front Microbiol. 2020 May 20;11:958 [PMID: 32508781]
  10. Mol Plant Microbe Interact. 2006 Aug;19(8):838-53 [PMID: 16903350]
  11. Plant Dis. 2016 Feb;100(2):510-514 [PMID: 30694140]
  12. Front Plant Sci. 2023 May 15;14:1145715 [PMID: 37255560]
  13. J Fungi (Basel). 2020 Aug 31;6(3): [PMID: 32878102]
  14. J Fungi (Basel). 2022 Jan 15;8(1): [PMID: 35050022]
  15. Chem Biodivers. 2021 Feb;18(2):e2000672 [PMID: 33289281]
  16. J Fungi (Basel). 2022 Nov 10;8(11): [PMID: 36354953]
  17. Pestic Biochem Physiol. 2018 May;147:59-66 [PMID: 29933994]
  18. Molecules. 2022 Nov 07;27(21): [PMID: 36364454]
  19. mBio. 2022 Aug 30;13(4):e0038922 [PMID: 35862794]
  20. New Phytol. 2015 Dec;208(4):1202-16 [PMID: 26137988]
  21. Imeta. 2023 Feb 16;2(1):e87 [PMID: 38868339]
  22. Redox Biol. 2017 Apr;11:254-262 [PMID: 28012440]
  23. Mol Biosyst. 2014 Jul 29;10(9):2289-98 [PMID: 24948000]
  24. Mol Ecol Resour. 2020 Jan;20(1):348-355 [PMID: 31599058]
  25. Front Microbiol. 2023 Oct 19;14:1264699 [PMID: 37928660]
  26. Ecol Evol. 2014 Apr;4(8):1369-80 [PMID: 24834333]
  27. Mycologia. 2005 Nov-Dec;97(6):1365-78 [PMID: 16722227]
  28. Pest Manag Sci. 2024 Jun;80(6):3010-3021 [PMID: 38318950]
  29. Arch Microbiol. 2015 Jun;197(5):723-7 [PMID: 25771960]
  30. Front Microbiol. 2018 Oct 31;9:2614 [PMID: 30455673]
  31. PLoS One. 2017 Jun 23;12(6):e0179957 [PMID: 28644879]
  32. Plants (Basel). 2020 Jul 19;9(7): [PMID: 32707691]
  33. Plant Physiol Biochem. 2016 Mar;100:64-74 [PMID: 26774866]
  34. J Appl Microbiol. 2023 Feb 16;134(2): [PMID: 36724264]
  35. Appl Microbiol Biotechnol. 2014 Jan;98(2):533-44 [PMID: 24276619]
  36. J Fungi (Basel). 2022 Jan 25;8(2): [PMID: 35205867]
  37. Environ Sci Technol. 2019 Apr 2;53(7):3347-3365 [PMID: 30835448]
  38. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  39. Cell Commun Signal. 2023 Apr 17;21(1):78 [PMID: 37069625]
  40. Small. 2024 Apr;20(14):e2306402 [PMID: 37992239]
  41. Front Plant Sci. 2018 Apr 05;9:409 [PMID: 29675028]
  42. J Fungi (Basel). 2023 Jan 16;9(1): [PMID: 36675948]
  43. Microb Pathog. 2018 Oct;123:478-486 [PMID: 30107193]
  44. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  45. Pestic Biochem Physiol. 2015 Feb;118:19-25 [PMID: 25752425]
  46. Mol Biol Evol. 1999 Dec;16(12):1799-808 [PMID: 10605121]
  47. Diagn Mol Pathol. 2006 Mar;15(1):56-61 [PMID: 16531770]

Word Cloud

Created with Highcharts 10.0.0CFSValsapearcankercell-freesupernatantcontrolmechanismidentifiedproductionproducedinhibitoryWJ561exhibitedhyphalleadingreactiveoxygenspeciesantifungalactivitydamageIntroduction:PearcausedposesmajorthreataimedassesseffectivenessdevelopmentrevealpathogenicfungiResults:UsingmorphologicalcharacteristicsphylogeneticanalysispathogenG1HbiocontrolfungusderivedstronginhibitionmycelialgrowthcapablereducingpathogenicityleavestwigsScanningelectronmicroscopySEMobservationsrevealeddeformationsshrinkagesfungalhyphaetreatedalsodestroyedmembranesleakagecellularcontentsincreasemalondialdehydeMDAcontentAdditionallysignificantlyinhibitedactivitiescatalaseCATsuperoxidedismutaseSODdownregulatedexpressionantioxidantdefense-relatedgenescausingaccumulationROSArtesunatemaincomponentliquidchromatograph-massspectrometryLC-MSConclusion:findingsdemonstratepromisingpotentialcontrollingprimaryinvolvesmultipleprocessesincludingmembranenegativelyaffectingenzymaticdetoxificationpathwaysconsequentlyoxidativestudylaystheoreticalfoundationutilizationpracticalAntifungalefficacyTrichodermavirenspyri

Similar Articles

Cited By