Ribosomal RNA expansion segments and their role in ribosome biology.

Robert Rauscher, Norbert Polacek
Author Information
  1. Robert Rauscher: Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland. ORCID
  2. Norbert Polacek: Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.

Abstract

Ribosomes are universally conserved cellular machines that catalyze protein biosynthesis. The active sites underly immense evolutionary conservation resulting in virtually identical core structures of ribosomes in all domains of life including organellar ribosomes. However, more peripheral structures of cytosolic ribosomes changed during evolution accommodating new functions and regulatory options. The expansion occurred at the riboprotein level, including more and larger ribosomal proteins and at the RNA level increasing the length of ribosomal RNA. Expansions within the ribosomal RNA occur as clusters at conserved sites that face toward the periphery of the cytosolic ribosome. Recent biochemical and structural work has shed light on how rRNA-specific expansion segments (ESs) recruit factors during translation and how they modulate translation dynamics in the cytosol. Here we focus on recent work on yeast, human and trypanosomal cytosolic ribosomes that explores the role of two specific rRNA ESs within the small and large subunit respectively. While no single regulatory strategy exists, the absence of ESs has consequences for proteomic stability and cellular fitness, rendering them fascinating evolutionary tools for tailored protein biosynthesis.

Keywords

References

  1. Cell. 2014 Jan 16;156(1-2):158-69 [PMID: 24361105]
  2. J Cell Physiol. 2018 Dec;233(12):9110-9120 [PMID: 30076717]
  3. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10251-6 [PMID: 24982194]
  4. PLoS Biol. 2023 Apr 20;21(4):e3001995 [PMID: 37079644]
  5. Mol Cell. 2021 Jan 21;81(2):304-322.e16 [PMID: 33357414]
  6. Nat Struct Mol Biol. 2019 Jan;26(1):35-39 [PMID: 30559462]
  7. Mol Cell Biol. 2013 Dec;33(24):4811-23 [PMID: 24100011]
  8. Cell. 2016 Jan 14;164(1-2):91-102 [PMID: 26709046]
  9. Nat Commun. 2020 Feb 7;11(1):776 [PMID: 32034140]
  10. Nat Commun. 2023 Oct 27;14(1):6774 [PMID: 37891180]
  11. Nat Struct Mol Biol. 2012 Dec;19(12):1228-33 [PMID: 23142985]
  12. Nat Struct Mol Biol. 2012 Jun 05;19(6):560-7 [PMID: 22664983]
  13. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1558-63 [PMID: 17242366]
  14. Mol Cell. 2010 Jul 30;39(2):196-208 [PMID: 20670889]
  15. Science. 2011 Dec 16;334(6062):1524-9 [PMID: 22096102]
  16. Trends Biochem Sci. 2016 Sep;41(9):746-760 [PMID: 27498224]
  17. Chem Biol. 1998 Oct;5(10):539-53 [PMID: 9818147]
  18. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19748-53 [PMID: 20980660]
  19. Cell Rep. 2020 Dec 22;33(12):108534 [PMID: 33357443]
  20. RNA. 2016 Aug;22(8):1153-62 [PMID: 27317789]
  21. Nature. 2013 Feb 21;494(7437):385-9 [PMID: 23395961]
  22. Mol Cell. 2018 Dec 20;72(6):1013-1020.e6 [PMID: 30576652]
  23. Nat Commun. 2022 Feb 10;13(1):810 [PMID: 35145090]
  24. Nature. 2022 May;605(7909):279-284 [PMID: 35546190]
  25. RNA. 2021 Apr;27(4):411-419 [PMID: 33479117]
  26. Nucleic Acids Res. 2024 Apr 24;52(7):4021-4036 [PMID: 38324474]
  27. Nucleic Acids Res. 2020 Apr 6;48(6):3244-3256 [PMID: 31960048]
  28. Nucleic Acids Res. 2019 Jan 8;47(D1):D221-D229 [PMID: 30395267]
  29. Science. 2010 Feb 19;327(5968):973-7 [PMID: 20110468]

MeSH Term

RNA, Ribosomal
Humans
Ribosomes
Protein Biosynthesis
Ribosomal Proteins
Nucleic Acid Conformation
Saccharomyces cerevisiae

Chemicals

RNA, Ribosomal
Ribosomal Proteins

Word Cloud

Created with Highcharts 10.0.0ribosomesexpansionRNAtranslationcytosolicribosomalsegmentsESsconservedcellularproteinbiosynthesissitesevolutionarystructuresincludingregulatorylevelwithinribosomeworkrolerRNARibosomesuniversallymachinescatalyzeactiveunderlyimmenseconservationresultingvirtuallyidenticalcoredomainslifeorganellarHoweverperipheralchangedevolutionaccommodatingnewfunctionsoptionsoccurredriboproteinlargerproteinsincreasinglengthExpansionsoccurclustersfacetowardperipheryRecentbiochemicalstructuralshedlightrRNA-specificrecruitfactorsmodulatedynamicscytosolfocusrecentyeasthumantrypanosomalexplorestwospecificsmalllargesubunitrespectivelysinglestrategyexistsabsenceconsequencesproteomicstabilityfitnessrenderingfascinatingtoolstailoredRibosomalbiologycotranslationalfactorrecruitmentnascentpeptidechainmaturationelongationregulation

Similar Articles

Cited By (1)