Design of high-performance entangling logic in silicon quantum dot systems with Bayesian optimization.

Ji-Hoon Kang, Taehyun Yoon, Chanhui Lee, Sungbin Lim, Hoon Ryu
Author Information
  1. Ji-Hoon Kang: Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea.
  2. Taehyun Yoon: Artificial Intelligence Graduate School, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
  3. Chanhui Lee: Department of Artificial Intelligence, Korea University, Seoul, 02841, Republic of Korea.
  4. Sungbin Lim: Department of Statistics, Korea University, Seoul, 02841, Republic of Korea. sungbin@korea.ac.kr.
  5. Hoon Ryu: Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Republic of Korea. elec1020@kisti.re.kr.

Abstract

Device engineering based on computer-aided simulations is essential to make silicon (Si) quantum bits (qubits) be competitive to commercial platforms based on superconductors and trapped ions. Combining device simulations with the Bayesian optimization (BO), here we propose a systematic design approach that is quite useful to procure fast and precise entangling operations of qubits encoded to electron spins in electrode-driven Si quantum dot (QD) systems. For a target problem of the controlled-X (CNOT) logic operation, we employ BO with the Gaussian process regression to evolve design factors of a Si double QD system to the ones that are optimal in terms of speed and fidelity of a CNOT logic driven by a single microwave pulse. The design framework not only clearly contributes to cost-efficient securing of solutions that enhance performance of the target quantum operation, but can be extended to implement more complicated logics with Si QD structures in experimentally unprecedented ways.

References

  1. Nat Commun. 2017 Dec 15;8(1):1766 [PMID: 29242497]
  2. Nat Nanotechnol. 2014 Dec;9(12):981-5 [PMID: 25305743]
  3. Sci Rep. 2021 Sep 30;11(1):19406 [PMID: 34593827]
  4. Sci Rep. 2022 Sep 7;12(1):15200 [PMID: 36071130]
  5. Nat Commun. 2017 Sep 6;8(1):450 [PMID: 28878207]
  6. Phys Rev Lett. 2016 Mar 18;116(11):110402 [PMID: 27035289]
  7. Nat Commun. 2016 Nov 24;7:13575 [PMID: 27882926]
  8. Sci Adv. 2022 Apr 8;8(14):eabn5130 [PMID: 35385308]
  9. Phys Rev Lett. 2012 Apr 6;108(14):140503 [PMID: 22540779]
  10. Science. 2018 Jan 26;359(6374):439-442 [PMID: 29217586]
  11. Nanotechnology. 2011 Aug 5;22(31):315709 [PMID: 21737873]
  12. Sci Adv. 2018 Jul 06;4(7):eaar3960 [PMID: 29984303]
  13. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3305-3310 [PMID: 28325879]
  14. Sci Rep. 2017 Aug 30;7(1):9949 [PMID: 28855600]
  15. Nat Nanotechnol. 2018 Feb;13(2):102-106 [PMID: 29255292]
  16. Nature. 2012 Jan 18;481(7381):344-7 [PMID: 22258613]
  17. Nat Commun. 2019 Nov 29;10(1):5464 [PMID: 31784527]
  18. Nanoscale. 2021 Jan 7;13(1):332-339 [PMID: 33346301]
  19. Nat Nanotechnol. 2021 Sep;16(9):965-969 [PMID: 34099899]
  20. Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11738-11743 [PMID: 27698123]
  21. Adv Mater. 2020 Oct;32(40):e2003361 [PMID: 32830388]

Grants

  1. 2022M3E4A1072893/National Research Foundation of Korea
  2. 2021R1A4A3033149/National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0SiquantumdesignQDlogicbasedsimulationssiliconqubitsBayesianoptimizationBOentanglingdotsystemstargetCNOToperationDeviceengineeringcomputer-aidedessentialmakebitscompetitivecommercialplatformssuperconductorstrappedionsCombiningdeviceproposesystematicapproachquiteusefulprocurefastpreciseoperationsencodedelectronspinselectrode-drivenproblemcontrolled-XemployGaussianprocessregressionevolvefactorsdoublesystemonesoptimaltermsspeedfidelitydrivensinglemicrowavepulseframeworkclearlycontributescost-efficientsecuringsolutionsenhanceperformancecanextendedimplementcomplicatedlogicsstructuresexperimentallyunprecedentedwaysDesignhigh-performance

Similar Articles

Cited By