Validation of aminodeoxychorismate synthase and anthranilate synthase as novel targets for bispecific antibiotics inhibiting conserved protein-protein interactions.

Franziska Jasmin Funke, Sandra Schlee, Reinhard Sterner
Author Information
  1. Franziska Jasmin Funke: Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany. ORCID
  2. Sandra Schlee: Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
  3. Reinhard Sterner: Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany. ORCID

Abstract

Multi-resistant bacteria are a rapidly emerging threat to modern medicine. It is thus essential to identify and validate novel antibacterial targets that promise high robustness against resistance-mediating mutations. This can be achieved by simultaneously targeting several conserved function-determining protein-protein interactions in enzyme complexes from prokaryotic primary metabolism. Here, we selected two evolutionary related glutamine amidotransferase complexes, aminodeoxychorismate synthase and anthranilate synthase, that are required for the biosynthesis of folate and tryptophan in most prokaryotic organisms. Both enzymes rely on the interplay of a glutaminase and a synthase subunit that is conferred by a highly conserved subunit interface. Consequently, inhibiting subunit association in both enzymes by one competing bispecific inhibitor has the potential to suppress bacterial proliferation. We comprehensively verified two conserved interface hot-spot residues as potential inhibitor-binding sites by demonstrating their crucial role in subunit association and enzymatic activity. For target validation, we generated genomically modified strains in which subunit association was disrupted by modifying these central interface residues. The growth of such strains was drastically retarded on liquid and solid minimal medium due to a lack of folate and tryptophan. Remarkably, the bacteriostatic effect was observed even in the presence of heat-inactivated human plasma, demonstrating that accessible host metabolite concentrations do not compensate for the lack of folate and tryptophan within the tested bacterial cells. We conclude that a potential inhibitor targeting both enzyme complexes will be effective against a broad spectrum of pathogens and offer increased resilience against antibiotic resistance.
IMPORTANCE: Antibiotics are indispensable for the treatment of bacterial infections in human and veterinary medicine and are thus a major pillar of modern medicine. However, the exposure of bacteria to antibiotics generates an unintentional selective pressure on bacterial assemblies that over time promotes the development or acquisition of resistance mechanisms, allowing pathogens to escape the treatment. In that manner, humanity is in an ever-lasting race with pathogens to come up with new treatment options before resistances emerge. In general, antibiotics with novel modes of action require more complex pathogen adaptations as compared to chemical derivates of existing entities, thus delaying the emergence of resistance. In this contribution, we use modified strains to validate two novel targets required for folate and tryptophan biosynthesis that can potentially be targeted by one and the same bispecific protein-protein interaction inhibitor and promise increased robustness against bacterial resistances.

Keywords

References

  1. Sci Rep. 2016 Dec 01;6:38083 [PMID: 27905500]
  2. Proc Natl Acad Sci U S A. 1984 Feb;81(3):908-12 [PMID: 6422465]
  3. Infect Immun. 2011 Dec;79(12):4965-76 [PMID: 21947774]
  4. Drug Resist Updat. 2019 May;44:100640 [PMID: 31492517]
  5. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  6. Front Immunol. 2014 Aug 11;5:384 [PMID: 25157255]
  7. J Biol Chem. 1979 Oct 25;254(20):10337-45 [PMID: 385600]
  8. Structure. 2021 Mar 4;29(3):292-304.e3 [PMID: 33296666]
  9. J Mol Biol. 1998 Jul 3;280(1):1-9 [PMID: 9653027]
  10. J Infect Dis. 1973 Nov;128:Suppl: 437-41 [PMID: 4585969]
  11. Antimicrob Agents Chemother. 2015 Dec;59(12):7265-72 [PMID: 26369968]
  12. Antimicrob Agents Chemother. 2017 Sep 22;61(10): [PMID: 28717039]
  13. Blood. 2005 Nov 1;106(9):3150-9 [PMID: 16014563]
  14. J Mol Biol. 2019 Jul 12;431(15):2718-2728 [PMID: 31121180]
  15. Blood Adv. 2022 Jul 26;6(14):4147-4156 [PMID: 35413116]
  16. Tetrahedron. 2016 Jun 23;72(25):3609-3624 [PMID: 27429480]
  17. ACS Infect Dis. 2022 Sep 9;8(9):1731-1757 [PMID: 35946799]
  18. Adv Enzymol Relat Areas Mol Biol. 1998;72:87-144 [PMID: 9559052]
  19. Molecules. 2020 Mar 16;25(6): [PMID: 32187986]
  20. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  21. Int J Tryptophan Res. 2015 Aug 04;8:41-8 [PMID: 26309411]
  22. J Bacteriol. 1998 Apr;180(8):2063-71 [PMID: 9555887]
  23. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8333-E8342 [PMID: 28923934]
  24. RSC Chem Biol. 2021 Feb 3;2(2):387-409 [PMID: 34458791]
  25. Front Microbiol. 2014 Oct 20;5:551 [PMID: 25368610]
  26. Bioorg Med Chem Lett. 2015 Jun 15;25(12):2461-8 [PMID: 25971770]
  27. J Antibiot (Tokyo). 2020 Jun;73(6):329-364 [PMID: 32152527]
  28. Nucleic Acids Res. 1998 Aug 1;26(15):3453-9 [PMID: 9671804]
  29. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83 [PMID: 10811905]
  30. Nat Commun. 2024 Feb 7;15(1):1135 [PMID: 38326297]
  31. Infect Immun. 2022 Nov 17;90(11):e0020722 [PMID: 36317877]
  32. Sci STKE. 2004 Feb 03;2004(219):pl2 [PMID: 14872095]
  33. Sci Transl Med. 2022 Aug 10;14(657):eabo7793 [PMID: 35947678]
  34. Med Res Rev. 2020 Mar;40(2):469-494 [PMID: 30004586]
  35. FEMS Microbiol Rev. 2022 Mar 3;46(2): [PMID: 34673942]
  36. Biochemistry. 2019 Jun 4;58(22):2584-2588 [PMID: 31117390]
  37. Br J Pharmacol. 2017 Jul;174(14):2225-2236 [PMID: 27925153]
  38. Gene. 1995 May 26;158(1):9-14 [PMID: 7789817]
  39. Mol Microbiol. 2000 Jun;36(6):1371-80 [PMID: 10931287]
  40. Nat Rev Microbiol. 2006 Apr;4(4):295-305 [PMID: 16541137]
  41. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  42. Science. 1997 Jun 13;276(5319):1696-9 [PMID: 9180079]
  43. Adv Appl Bioinform Chem. 2020 Nov 12;13:11-25 [PMID: 33209039]
  44. J Infect Dis. 1973 Nov;128:Suppl:433-6 p [PMID: 4758044]
  45. Chem Biol. 2014 Sep 18;21(9):1102-14 [PMID: 25237857]
  46. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14116-21 [PMID: 12381794]
  47. Curr Opin Chem Biol. 2013 Dec;17(6):952-9 [PMID: 24183815]
  48. Nat Rev Drug Discov. 2016 Aug;15(8):533-50 [PMID: 27050677]
  49. Scand J Infect Dis. 1986;18(1):3-13 [PMID: 3515508]
  50. Eur J Haematol. 1996 Sep;57(3):230-40 [PMID: 8898928]
  51. Nat Commun. 2018 Mar 8;9(1):1003 [PMID: 29520101]
  52. Lancet Infect Dis. 2016 Feb;16(2):161-8 [PMID: 26603172]
  53. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6021-6 [PMID: 11371633]
  54. Clin Microbiol Rev. 2009 Oct;22(4):582-610 [PMID: 19822890]

Grants

  1. 16GW0257/German Ministry for Education and Research

MeSH Term

Anthranilate Synthase
Anti-Bacterial Agents
Enzyme Inhibitors
Escherichia coli
Escherichia coli Proteins
Transaminases
Tryptophan
Antibodies, Bispecific

Chemicals

aminodeoxychorismate synthase
Anthranilate Synthase
Anti-Bacterial Agents
Enzyme Inhibitors
Escherichia coli Proteins
Transaminases
Tryptophan
Antibodies, Bispecific

Word Cloud

Created with Highcharts 10.0.0synthasesubunitbacterialnovelconservedprotein-proteinfolatetryptophanresistancemedicinethustargetsinteractionsenzymecomplexestwointerfaceassociationbispecificinhibitorpotentialstrainspathogensantibiotictreatmentantibioticsbacteriamodernvalidatepromiserobustnesscantargetingprokaryoticglutamineaminodeoxychorismateanthranilaterequiredbiosynthesisenzymesinhibitingoneresiduesdemonstratingtargetvalidationmodifiedlackhumanincreasedresistancescomplexMulti-resistantrapidlyemergingthreatessentialidentifyantibacterialhighresistance-mediatingmutationsachievedsimultaneouslyseveralfunction-determiningprimarymetabolismselectedevolutionaryrelatedamidotransferaseorganismsrelyinterplayglutaminaseconferredhighlyConsequentlycompetingsuppressproliferationcomprehensivelyverifiedhot-spotinhibitor-bindingsitescrucialroleenzymaticactivitygeneratedgenomicallydisruptedmodifyingcentralgrowthdrasticallyretardedliquidsolidminimalmediumdueRemarkablybacteriostaticeffectobservedevenpresenceheat-inactivatedplasmaaccessiblehostmetaboliteconcentrationscompensatewithintestedcellsconcludewilleffectivebroadspectrumofferresilienceIMPORTANCE:AntibioticsindispensableinfectionsveterinarymajorpillarHoweverexposuregeneratesunintentionalselectivepressureassembliestimepromotesdevelopmentacquisitionmechanismsallowingescapemannerhumanityever-lastingracecomenewoptionsemergegeneralmodesactionrequirepathogenadaptationscomparedchemicalderivatesexistingentitiesdelayingemergencecontributionusepotentiallytargetedinteractionValidationamidotransferases

Similar Articles

Cited By

No available data.