New-generation biofilm effective antimicrobial peptides and a real-time anti-biofilm activity assay: CoMIC.

Tuba Polat, ��rem Soyhan, Sinan Cebeci, Tu��ba Arzu ��zal ��ldeniz, ��zg��l G��k, Merve A����kel Elmas, Erkan Mozio��lu, Nihan ��n��bol
Author Information
  1. Tuba Polat: Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
  2. ��rem Soyhan: Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
  3. Sinan Cebeci: Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
  4. Tu��ba Arzu ��zal ��ldeniz: Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
  5. ��zg��l G��k: Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
  6. Merve A����kel Elmas: Department of Histology and Embriology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
  7. Erkan Mozio��lu: Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey. erkan.mozioglu@acibadem.edu.tr.
  8. Nihan ��n��bol: Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey. nihan.unubol@acibadem.edu.tr.

Abstract

Nowadays, it is very important to produce new-generation drugs with antimicrobial properties that will target biofilm-induced infections. The first target for combating these microorganisms, which are the source itself. Antimicrobial peptides, which are more effective than antibiotics due to their ability to kill microorganisms and use a different metabolic pathway, are among the new options today. The aim of this study is to develop new-generation antibiotics that inhibit both biofilm-producing bacteria and the biofilm itself. For this purpose, we designed four different peptides by combining two amino acid forms (D- and L-) with the same sequence having alpha helix structures. It was found that the combined use of these two forms can increase antimicrobial efficacy more than 30-fold. These results are supported by molecular modeling and scanning electron microscopy (SEM), at the same time cytotoxicity (IC) and hemotoxicity (HC) values remained within the safe range. Furthermore, antibiofilm activities of these peptides were investigated. Since the existing biofilm inhibition methods in the literature do not technically simulate the exact situation, in this study, we have developed a real-time observable biofilm model and a new detection method based on it, which we call the CoMIC method. Findings have shown that the NET1 peptide with D-leucine amino acid in its structure and the NET3 peptide with D-arginine amino acid in its structure are effective in inhibiting biofilm. As a conclusion, our peptides can be considered as potential next-generation broad-spectrum antibiotic molecule/drug candidates that might be used in biofilm and clinical important bacteria. KEY POINTS: ��� Antimicrobial peptides were developed to inhibit both biofilms producing bacteria and the biofilm itself. ��� CoMIC will fill a very crucial gap in understanding biofilms and conducting the necessary quantitative studies. ��� Molecular modelling studies, NET1 peptide molecules tends to move towards and adhere to the membrane within nanoseconds.

Keywords

References

  1. Microbiol Immunol. 2002;46(11):741-9 [PMID: 12516770]
  2. Curr Protoc Microbiol. 2013 Feb;Chapter 9:Unit 9C.1 [PMID: 23408134]
  3. Sci Rep. 2017 Mar 06;7:43384 [PMID: 28262682]
  4. J Comput Chem. 2005 Dec;26(16):1781-802 [PMID: 16222654]
  5. J Clin Microbiol. 2009 Apr;47(4):885-8 [PMID: 19171682]
  6. Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a000398 [PMID: 20519345]
  7. Nat Rev Drug Discov. 2020 May;19(5):311-332 [PMID: 32107480]
  8. Mol Med Today. 1999 Jul;5(7):292-7 [PMID: 10377520]
  9. Materials (Basel). 2022 Sep 28;15(19): [PMID: 36234069]
  10. Front Cell Infect Microbiol. 2022 Jan 05;11:795797 [PMID: 35071046]
  11. Molecules. 2018 Aug 14;23(8): [PMID: 30110916]
  12. Int J Microbiol. 2020 Apr 8;2020:2131535 [PMID: 32322274]
  13. Braz J Microbiol. 2011 Apr;42(2):476-9 [PMID: 24031658]
  14. Trends Biotechnol. 2011 Sep;29(9):464-72 [PMID: 21680034]
  15. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  16. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24 [PMID: 18216768]
  17. Front Microbiol. 2021 Jan 14;11:617473 [PMID: 33519777]
  18. Sci Transl Med. 2018 Jan 10;10(423): [PMID: 29321257]
  19. BMC Microbiol. 2018 Nov 3;18(1):173 [PMID: 30390625]
  20. J Microbiol Methods. 2000 Apr;40(2):175-9 [PMID: 10699673]
  21. Eur J Med Chem. 2017 Nov 10;140:615-623 [PMID: 29017116]
  22. J Med Chem. 2019 Mar 14;62(5):2286-2304 [PMID: 30742437]
  23. J Appl Microbiol. 2022 Mar;132(3):1558-1572 [PMID: 34617369]
  24. Virulence. 2018 Jan 1;9(1):522-554 [PMID: 28362216]
  25. Antibiotics (Basel). 2021 Sep 10;10(9): [PMID: 34572678]
  26. Nat Rev Microbiol. 2004 Feb;2(2):95-108 [PMID: 15040259]
  27. Int J Antimicrob Agents. 2011 Sep;38(3):217-25 [PMID: 21733662]
  28. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W288-93 [PMID: 22581768]
  29. Cureus. 2016 Feb 23;8(2):e505 [PMID: 27026830]
  30. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  31. Biol Proced Online. 2019 Sep 13;21:18 [PMID: 31528123]
  32. BMC Microbiol. 2011 May 23;11:114 [PMID: 21605457]
  33. Sens Actuators B Chem. 2023 Feb 1;376(Pt A): [PMID: 36688105]
  34. Pathogens. 2014 Oct 03;3(4):791-821 [PMID: 25436505]
  35. BMC Microbiol. 2017 Feb 16;17(1):36 [PMID: 28209130]

MeSH Term

Biofilms
Antimicrobial Peptides
Microbial Sensitivity Tests
Anti-Bacterial Agents
Models, Molecular
Microscopy, Electron, Scanning
Bacteria

Chemicals

Antimicrobial Peptides
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0peptidesbiofilmantimicrobialeffectivebacteriaaminoacidCoMICpeptide���importantnew-generationwilltargetmicroorganismsAntimicrobialantibioticsusedifferentnewstudyinhibittwoformscanwithindevelopedreal-timemethodNET1structurebiofilmsstudiesNowadaysproducedrugspropertiesbiofilm-inducedinfectionsfirstcombatingsourcedueabilitykillmetabolicpathwayamongoptionstodayaimdevelopbiofilm-producingpurposedesignedfourcombiningD-L-sequencealphahelixstructuresfoundcombinedincreaseefficacy30-foldresultssupportedmolecularmodelingscanningelectronmicroscopySEMtimecytotoxicityIChemotoxicityHCvaluesremainedsaferangeFurthermoreantibiofilmactivitiesinvestigatedSinceexistinginhibitionmethodsliteraturetechnicallysimulateexactsituationobservablemodeldetectionbasedcallFindingsshownD-leucineNET3D-arginineinhibitingconclusionconsideredpotentialnext-generationbroad-spectrumantibioticmolecule/drugcandidatesmightusedclinicalKEYPOINTS:producingfillcrucialgapunderstandingconductingnecessaryquantitativeMolecularmodellingmoleculestendsmovetowardsadheremembranenanosecondsNew-generationanti-biofilmactivityassay:Anti-biofilmActivityAssayAnticrobialBiofilmProteaseresistant

Similar Articles

Cited By (3)