Pre-hospital glycemia as a biomarker for in-hospital all-cause mortality in diabetic patients - a pilot study.

Salvatore Greco, Alessandro Salatiello, Francesco De Motoli, Antonio Giovine, Martina Veronese, Maria Grazia Cupido, Emma Pedarzani, Giorgia Valpiani, Angelina Passaro
Author Information
  1. Salvatore Greco: Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari, 46, 46 - 44121, Ferrara, Ferrara, Italy.
  2. Alessandro Salatiello: Department of Computer Science, University of Tübingen, Geschwister-Scholl-Platz, 72074, Tübingen, Germany.
  3. Francesco De Motoli: Local Health Unit of Ferrara, Medical Direction, Via Cassoli, 30, 44121, Ferrara, Italy.
  4. Antonio Giovine: Medical Department, Azienda Unità Sanitaria Locale di Ferrara, Delta Hospital, Via Valle Oppio, 2, 44023, Lagosanto, Ferrara, Italy.
  5. Martina Veronese: Research and Innovation Unit, Azienda-Ospedaliero Universitaria di Ferrara, Via Aldo Moro, 8, 44124, Cona, Ferrara, Italy.
  6. Maria Grazia Cupido: Long-term Care, Azienda Unità Sanitaria Locale di Ferrara, Delta Hospital, Via Valle Oppio, 2, 44023, Lagosanto, Ferrara, Italy.
  7. Emma Pedarzani: Research and Innovation Unit, Azienda-Ospedaliero Universitaria di Ferrara, Via Aldo Moro, 8, 44124, Cona, Ferrara, Italy.
  8. Giorgia Valpiani: Research and Innovation Unit, Azienda-Ospedaliero Universitaria di Ferrara, Via Aldo Moro, 8, 44124, Cona, Ferrara, Italy.
  9. Angelina Passaro: Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari, 46, 46 - 44121, Ferrara, Ferrara, Italy. angelina.passaro@unife.it. ORCID

Abstract

BACKGROUND: Type 2 Diabetes Mellitus (T2DM) presents a significant healthcare challenge, with considerable economic ramifications. While blood glucose management and long-term metabolic target setting for home care and outpatient treatment follow established procedures, the approach for short-term targets during hospitalization varies due to a lack of clinical consensus. Our study aims to elucidate the impact of pre-hospitalization and intra-hospitalization glycemic indexes on in-hospital survival rates in individuals with T2DM, addressing this notable gap in the current literature.
METHODS: In this pilot study involving 120 hospitalized diabetic patients, we used advanced machine learning and classical statistical methods to identify variables for predicting hospitalization outcomes. We first developed a 30-day mortality risk classifier leveraging AdaBoost-FAS, a state-of-the-art ensemble machine learning method for tabular data. We then analyzed the feature relevance to identify the key predictive variables among the glycemic and routine clinical variables the model bases its predictions on. Next, we conducted detailed statistical analyses to shed light on the relationship between such variables and mortality risk. Finally, based on such analyses, we introduced a novel index, the ratio of intra-hospital glycemic variability to pre-hospitalization glycemic mean, to better characterize and stratify the diabetic population.
RESULTS: Our findings underscore the importance of personalized approaches to glycemic management during hospitalization. The introduced index, alongside advanced predictive modeling, provides valuable insights for optimizing patient care. In particular, together with in-hospital glycemic variability, it is able to discriminate between patients with higher and lower mortality rates, highlighting the importance of tightly controlling not only pre-hospital but also in-hospital glycemic levels.
CONCLUSIONS: Despite the pilot nature and modest sample size, this study marks the beginning of exploration into personalized glycemic control for hospitalized patients with T2DM. Pre-hospital blood glucose levels and related variables derived from it can serve as biomarkers for all-cause mortality during hospitalization.

Keywords

References

  1. Curr Med Res Opin. 2013 Feb;29(2):101-7 [PMID: 23198978]
  2. Diabetologia. 2020 Feb;63(2):242-252 [PMID: 31701199]
  3. Cardiovasc Diabetol. 2021 May 7;20(1):101 [PMID: 33962641]
  4. Diabetes Care. 2006 Jan;29(1):44-50 [PMID: 16373894]
  5. Int J Environ Res Public Health. 2021 Oct 16;18(20): [PMID: 34682632]
  6. Crit Care Clin. 2001 Jan;17(1):107-24 [PMID: 11219223]
  7. Crit Care Med. 2007 Oct;35(10):2435-7 [PMID: 17885378]
  8. JAMA. 2006 Apr 12;295(14):1681-7 [PMID: 16609090]
  9. J Pediatr. 2005 Jan;146(1):5-7 [PMID: 15644810]
  10. Diabetes Care. 2014 Nov;37(11):2934-9 [PMID: 25168125]
  11. Diabetes Care. 2019 Aug;42(8):1593-1603 [PMID: 31177185]
  12. J Diabetes Complications. 2005 May-Jun;19(3):178-81 [PMID: 15866065]
  13. Arch Intern Med. 1999 Sep 27;159(17):2053-7 [PMID: 10510991]
  14. Diabetes. 1970 Sep;19(9):644-55 [PMID: 5469118]
  15. Diabetol Metab Syndr. 2023 Dec 4;15(1):249 [PMID: 38044455]
  16. J Diabetes Investig. 2019 May;10(3):780-792 [PMID: 30220102]
  17. J Chronic Dis. 1987;40(5):373-83 [PMID: 3558716]
  18. J Diabetes Sci Technol. 2009 May 01;3(3):429-38 [PMID: 20144279]
  19. Lancet Diabetes Endocrinol. 2021 Mar;9(3):174-188 [PMID: 33515493]
  20. JAMA Netw Open. 2021 Aug 2;4(8):e2120745 [PMID: 34387677]
  21. Cardiovasc Diabetol. 2022 Dec 27;21(1):291 [PMID: 36575485]
  22. Am J Kidney Dis. 1998 Nov;32(5 Suppl 3):S89-100 [PMID: 9820468]
  23. Heart Lung. 2021 Nov-Dec;50(6):933-940 [PMID: 34433111]
  24. Int J Environ Res Public Health. 2011 Feb;8(2):514-27 [PMID: 21556200]
  25. Int J Clin Pract. 2014 Oct;68(10):1264-71 [PMID: 25269951]
  26. Ann Thorac Med. 2015 Apr-Jun;10(2):94-9 [PMID: 25829959]
  27. J Diabetes Complications. 2017 Feb;31(2):479-482 [PMID: 27343028]
  28. Saudi J Anaesth. 2019 Apr;13(Suppl 1):S31-S34 [PMID: 30930717]
  29. Eur J Cardiovasc Nurs. 2012 Mar;11(1):105-13 [PMID: 22357785]
  30. J Vasc Surg. 2020 Feb;71(2):701-711 [PMID: 31327619]
  31. Clin Diabetes. 2016 Jan;34(1):3-21 [PMID: 26807004]
  32. Diabetes Care. 2015 Aug;38(8):1610-4 [PMID: 26207054]
  33. Aging Clin Exp Res. 2022 May;34(5):1037-1045 [PMID: 34796461]
  34. Crit Care. 2023 Jun 11;27(1):229 [PMID: 37303037]
  35. Diabetes Technol Ther. 2021 May;23(5):332-341 [PMID: 33107758]
  36. Diabetol Metab Syndr. 2021 Apr 09;13(1):42 [PMID: 33836819]
  37. J Am Coll Cardiol. 2022 May 10;79(18):1849-1857 [PMID: 35512864]
  38. Diabetes Technol Ther. 2003;5(5):817-28 [PMID: 14633347]

MeSH Term

Humans
Pilot Projects
Blood Glucose
Diabetes Mellitus, Type 2
Biomarkers
Male
Aged
Female
Middle Aged
Risk Assessment
Hospital Mortality
Risk Factors
Machine Learning
Time Factors
Predictive Value of Tests
Cause of Death
Prognosis
Glycemic Control
Hospitalization

Chemicals

Blood Glucose
Biomarkers

Word Cloud

Created with Highcharts 10.0.0glycemicvariablesmortalityhospitalizationstudyin-hospitalpatientsT2DMpilotdiabeticlearningvariabilityType2bloodglucosemanagementcareclinicalpre-hospitalizationrateshospitalizedadvancedmachinestatisticalidentifyriskAdaBoost-FASpredictiveanalysesintroducedindeximportancepersonalizedlevelsPre-hospitalall-causeBACKGROUND:DiabetesMellituspresentssignificanthealthcarechallengeconsiderableeconomicramificationslong-termmetabolictargetsettinghomeoutpatienttreatmentfollowestablishedproceduresapproachshort-termtargetsvariesduelackconsensusaimselucidateimpactintra-hospitalizationindexessurvivalindividualsaddressingnotablegapcurrentliteratureMETHODS:involving120usedclassicalmethodspredictingoutcomesfirstdeveloped30-dayclassifierleveragingstate-of-the-artensemblemethodtabulardataanalyzedfeaturerelevancekeyamongroutinemodelbasespredictionsNextconducteddetailedshedlightrelationshipFinallybasednovelratiointra-hospitalmeanbettercharacterizestratifypopulationRESULTS:findingsunderscoreapproachesalongsidemodelingprovidesvaluableinsightsoptimizingpatientparticulartogetherablediscriminatehigherlowerhighlightingtightlycontrollingpre-hospitalalsoCONCLUSIONS:Despitenaturemodestsamplesizemarksbeginningexplorationcontrolrelatedderivedcanservebiomarkersglycemiabiomarker-GlucosemetabolismdisorderGlycemicMachinediabetesmellitus

Similar Articles

Cited By