Sociodemographic reporting in videomics research: a review of practices in otolaryngology - head and neck surgery.

Yeo Eun Kim, Aisha Serpedin, Preethi Periyakoil, Daniel German, Anaïs Rameau
Author Information
  1. Yeo Eun Kim: Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA.
  2. Aisha Serpedin: Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA.
  3. Preethi Periyakoil: Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA.
  4. Daniel German: Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA.
  5. Anaïs Rameau: Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA. anr2783@med.cornell.edu. ORCID

Abstract

OBJECTIVE: To assess reporting practices of sociodemographic data in Upper Aerodigestive Tract (UAT) videomics research in Otolaryngology-Head and Neck Surgery (OHNS).
STUDY DESIGN: Narrative review.
METHODS: Four online research databases were searched for peer-reviewed articles on videomics and UAT endoscopy in OHNS, published since January 1, 2017. Title and abstract search, followed by a full-text screening was performed. Dataset audit criteria were determined by the MINIMAR reporting standards for patient demographic characteristics, in addition to gender and author affiliations.
RESULTS: Of the 57 studies that were included, 37% reported any sociodemographic information on their dataset. Among these studies, all reported age, most reported sex (86%), two (10%) reported race, and one (5%) reported ethnicity and socioeconomic status. No studies reported gender. Most studies (84%) included at least one female author, and more than half of the studies (53%) had female first/senior authors, with no significant differences in the rate of sociodemographic reporting in studies with and without female authors (any female author: p = 0.2664; first/senior female author: p > 0.9999). Most studies based in the US reported at least one sociodemographic variable (79%), compared to those in Europe (24%) and in Asia (20%) (p = 0.0012). The rates of sociodemographic reporting in journals of different categories were as follows: clinical OHNS: 44%, clinical non-OHNS: 40%, technical: 42%, interdisciplinary: 10%.
CONCLUSIONS: There is prevalent underreporting of sociodemographic information in OHNS videomics research utilizing UAT endoscopy. Routine reporting of sociodemographic information should be implemented for AI-based research to help minimize algorithmic biases that have been previously demonstrated.
LEVEL OF EVIDENCE: 4:

Keywords

References

  1. Hernandez-Boussard T, Bozkurt S, Ioannidis JPA, Shah NH (2020) MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care. J Am Med Inform Assoc 27(12):2011–2015 [PMID: 32594179]
  2. Bozkurt S, Cahan EM, Seneviratne MG, Sun R, Lossio-Ventura JA, Ioannidis JPA et al (2020) Reporting of demographic data and representativeness in machine learning models using electronic health records. J Am Med Inform Assoc 27(12):1878–1884 [PMID: 32935131]
  3. Ferryman K, Pitcan M (2018) Fairness in precision medicine Res. Proj., Data & Society. https://datasociety.net/research/fairness-precision-medicine/ . Accessed 8 Mar 2024
  4. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G (2018) Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med 178(11):1544–1547 [PMID: 30128552]
  5. Chung H, Park C, Kang WS, Lee J (2021) Gender bias in artificial intelligence: severity prediction at an early stage of COVID-19. Front Physiol 12:778720 [PMID: 34912242]
  6. SolansNoguero D, Ramírez-Cifuentes D, Ríssola EA, Freire A (2023) Gender bias when using artificial intelligence to assess anorexia nervosa on social media: data-driven study. J Med Internet Res 25:e45184 [DOI: 10.2196/45184]
  7. Larrazabal AJ, Nieto N, Peterson V, Milone DH, Ferrante E (2020) Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc Natl Acad Sci USA 117(23):12592–12594 [PMID: 32457147]
  8. Patel MA, Bock JM, Blumin JH, Friedland DR, Adams JA, Tong L et al (2022) Demographic differences in the treatment of unilateral vocal fold paralysis. Laryngoscope Investig Otolaryngol 7(6):1915–1921 [PMID: 36544963]
  9. Zhukhovitskaya A, Battaglia D, Khosla SM, Murry T, Sulica L (2015) Gender and age in benign vocal fold lesions. Laryngoscope 125(1):191–196 [PMID: 25216037]
  10. Batool S, Burks CA, Bergmark RW (2023) Healthcare disparities in otolaryngology. Curr Otorhinolaryngol Rep. https://doi.org/10.1007/s40136-023-00459-0 [DOI: 10.1007/s40136-023-00459-0]
  11. Sampieri C, Baldini C, Azam MA, Moccia S, Mattos LS, Vilaseca I et al (2023) Artificial intelligence for upper aerodigestive tract endoscopy and laryngoscopy: a guide for physicians and state-of-the-art review. Otolaryngol Head Neck Surg 169(4):811–829 [PMID: 37051892]
  12. Paderno A, Holsinger FC, Piazza C (2021) Videomics: bringing deep learning to diagnostic endoscopy. Curr Opin Otolaryngol Head Neck Surg 29(2):143–148 [PMID: 33595977]
  13. Zhang T, Bur AM, Kraft S, Kavookjian H, Renslo B, Chen X et al (2023) Gender, smoking history, and age prediction from laryngeal images. J Imaging. 9(6):109 [PMID: 37367457]
  14. Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB et al (2021) Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 11(7):e048008 [PMID: 34244270]
  15. Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L et al (2021) Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 11(6):e047709 [PMID: 34183345]
  16. Tang X, Li X, Ding Y, Song M, Bu Y (2020) The pace of artificial intelligence innovations: speed, talent, and trial-and-error. J Informet 14(4):101094 [DOI: 10.1016/j.joi.2020.101094]
  17. Pasick LJ, Yeakel H, Sataloff RT (2022) Sex bias in laryngology research and publishing. J Voice 36(3):389–395 [PMID: 32693977]
  18. Dunham ME, Kong KA, McWhorter AJ, Adkins LK (2022) Optical biopsy: automated classification of airway endoscopic findings using a convolutional neural network. Laryngoscope 132(Suppl 4):S1-s8 [PMID: 32343434]
  19. Yousef AM, Deliyski DD, Zacharias SRC, de Alarcon A, Orlikoff RF, Naghibolhosseini M (2022) A Deep learning approach for quantifying vocal fold dynamics during connected speech using laryngeal high-speed videoendoscopy. J Speech Lang Hear Res 65(6):2098–2113 [PMID: 35605603]
  20. Moccia S, De Momi E, Guarnaschelli M, Savazzi M, Laborai A, Guastini L et al (2017) Confident texture-based laryngeal tissue classification for early stage diagnosis support. J Med Imaging 4(3):034502 [DOI: 10.1117/1.JMI.4.3.034502]
  21. Moccia S, Vanone GO, Momi E, Laborai A, Guastini L, Peretti G et al (2018) Learning-based classification of informative laryngoscopic frames. Comput Methods Programs Biomed 158:21–30 [PMID: 29544787]
  22. Yin L, Liu Y, Pei M, Li J, Wu M, Jia Y (2021) Laryngoscope8: laryngeal image dataset and classification of laryngeal disease based on attention mechanism. Pattern Recogn Lett 150:207–213 [DOI: 10.1016/j.patrec.2021.06.034]
  23. Laves MH, Bicker J, Kahrs LA, Ortmaier T (2019) A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. Int J Comput Assist Radiol Surg 14(3):483–492 [PMID: 30649670]
  24. Li C, Jing B, Ke L, Li B, Xia W, He C et al (2018) Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies. Cancer Commun 38(1):59 [DOI: 10.1186/s40880-018-0325-9]
  25. Ay B, Turker C, Emre E, Ay K, Aydin G (2022) Automated classification of nasal polyps in endoscopy video-frames using handcrafted and CNN features. Comput Biol Med 147:105725 [PMID: 35716434]
  26. Gómez P, Kist AM, Schlegel P, Berry DA, Chhetri DK, Dürr S et al (2020) BAGLS, a multihospital benchmark for automatic glottis segmentation. Sci Data 7(1):186 [PMID: 32561845]
  27. He Y, Cheng Y, Huang Z, Xu W, Hu R, Cheng L et al (2021) A deep convolutional neural network-based method for laryngeal squamous cell carcinoma diagnosis. Ann Transl Med 9(24):1797 [PMID: 35071491]
  28. Riede T, Stein A, Baab KL, Hoxworth JM (2023) Post-pubertal developmental trajectories of laryngeal shape and size in humans. Sci Rep 13(1):7673 [PMID: 37169811]
  29. Gonçalves TM, Martins RHG, Adriana BBP (2018) Transmission electron microscopy of the presbylarynx in the process of voice aging. J Voice 32(1):3–7 [PMID: 29029831]
  30. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE (2018) Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol 138(7):1529–1538 [PMID: 29428356]
  31. Shin JY, Truong MT (2015) Racial disparities in laryngeal cancer treatment and outcome: a population-based analysis of 24,069 patients. Laryngoscope 125(7):1667–1674 [PMID: 25694265]
  32. Zuniga SA, Lango MN (2018) Effect of rural and urban geography on larynx cancer incidence and survival. Laryngoscope 128(8):1874–1880 [PMID: 29238975]
  33. Hou W-H, Daly ME, Lee NY, Farwell DG, Luu Q, Chen AM (2012) Racial disparities in the use of voice preservation therapy for locally advanced laryngeal cancer. Arch Otolaryngol Head Neck Surg 138(7):644–649 [PMID: 22801888]
  34. Fullmer T, Wilde DC, Shi JW, Wagner T, Skinner H, Eicher SA et al (2020) Demographic and tumor characteristic impact on laryngeal cancer outcomes in a minority underserved patient population. Otolaryngol Head Neck Surg 162(6):888–896 [PMID: 32093532]
  35. Feit NZ, Wang Z, Demetres MR, Drenis S, Andreadis K, Rameau A (2022) Healthcare disparities in laryngology: a scoping review. Laryngoscope 132(2):375–390 [PMID: 33314122]
  36. Vyas DA, Eisenstein LG, Jones DS (2020) Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N Engl J Med 383(9):874–882 [PMID: 32853499]
  37. Roberts DE (2021) Abolish race correction. Lancet 397(10268):17–18 [PMID: 33388099]
  38. Cardenas-Iniguez C, Gonzalez MR (2024) Recommendations for the responsible use and communication of race and ethnicity in neuroimaging research. Nat Neurosci 22:1–4
  39. Nature journals raise the bar on sex and gender reporting in research (2022) Nature 605(7910):396. https://doi.org/10.1038/d41586-022-01218-9
  40. Balestra C, Fleischer L (2018) Diversity statistics in the OECD: How do OECD countries collect data on ethnic, racial and indigenous identity? OECD Statistics Working Papers, No. 2018/09, OECD Publishing, Paris. https://doi.org/10.1787/89bae654-en
  41. Siegfried G, Örjan H, Richard P, Denny V (2006) Education, income, and occupational class cannot be used interchangeably in social epidemiology: empirical evidence against a common practice. J Epidemiol Community Health 60(9):804 [DOI: 10.1136/jech.2005.041319]
  42. Trinidad S, Brokamp C, MorHuertas A, Beck AF, Riley CL, Rasnick E, Falcone R, Kotagal M (2022) Use of area-based socioeconomic deprivation indices: a scoping review and qualitative analysis. Health Aff 41(12):1804–11 [DOI: 10.1377/hlthaff.2022.00482]
  43. Heidari S, Babor TF, De Castro P, Tort S, Curno M (2016) Sex and gender equity in research: rationale for the SAGER guidelines and recommended use. Res Integr Peer Rev 1:2 [PMID: 29451543]
  44. Clayton JA, Tannenbaum C (2016) Reporting sex, gender, or both in clinical research? JAMA 316(18):1863–1864 [PMID: 27802482]
  45. Brunings JW, Schepens JJ, Peutz-Kootstra CJ, Kross KW (2013) The expression of estrogen and progesterone receptors in the human larynx. J Voice 27(3):376–380 [PMID: 23490124]
  46. Dwyer CD, Schneider SL, Gutierrez D, Rosen CA (2023) Gender-affirming voice surgery: considerations for surgical intervention. Semin Speech Lang 44(2):76–89 [PMID: 36882075]
  47. Hughes CK, McGarey P, Morrison D, Gawlik AE, Dominguez L, Dion GR (2021) Vocal fold thinning in transgender patients. J Voice. https://doi.org/10.1016/j.jvoice.2021.06.026 [DOI: 10.1016/j.jvoice.2021.06.026]
  48. Fazal M, Oles N, Beckham SW, Wang J, Noyes M, Twose C et al (2023) Sociodemographics of patient populations undergoing gender-affirming surgery: a systematic review of all cohort studies. Transgend Health 8(3):213–219 [PMID: 37342473]
  49. National Institutes of Health (2015) Consideration of sex as a biological variable in NIH-funded research. Notice NOT-OD-15-102, 2015. National Institutes of Health, Bethesda
  50. Stephenson ED, Farzal Z, Kilpatrick LA et al (2019) Sex bias in basic science and translational otolaryngology research. Laryngoscope 129:613–618 [PMID: 30408174]
  51. Xiao N, Mansukhani NA, De Oliveira DFM, Kibbe MR (2018) Association of author gender with sex bias in surgical research. JAMA Surg 153(7):663–670 [PMID: 29590329]
  52. Fang CH, Barinsky GL, Gray ST, Baredes S, Chandrasekhar SS, Eloy JA (2021) Diversifying researchers and funding in otolaryngology. Otolaryngol Clin North Am 54(3):653–663 [PMID: 34024491]
  53. West M, Kraut R, Ei Chew H (2019) I’d blush if I could: closing gender divides in digital skills through education. UNESCO; 2019
  54. Fain KM, Nelson JT, Tse T, Williams RJ (2021) Race and ethnicity reporting for clinical trials in ClinicalTrials.gov and publications. Contemp Clin Trials 101:106237 [PMID: 33290865]
  55. Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H et al (2020) Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689 [PMID: 32213531]
  56. Petersilge CA, McDonald J, Bishop M, Yudkovitch L, Treuting C, Towbin AJ (2022) Visible light imaging: clinical aspects with an emphasis on medical photography—a HIMSS-SIIM enterprise imaging community whitepaper. J Digit Imaging 35(3):385–395 [PMID: 35146611]
  57. Baethge C, Goldbeck-Wood S, Mertens S (2019) SANRA—a scale for the quality assessment of narrative review articles. Res Integr Peer Rev 4:5 [PMID: 30962953]

Grants

  1. K76 AG079040/NIA NIH HHS
  2. OT2 OD032720/ODCDC CDC HHS
  3. K76 AG079040/NIA NIH HHS
  4. OT2 OD032720/ODCDC CDC HHS

MeSH Term

Humans
Otolaryngology
Video Recording
Sociodemographic Factors
Endoscopy
Biomedical Research
Female

Word Cloud

Created with Highcharts 10.0.0sociodemographicstudiesreportedreportingfemalevideomicsresearchUATOHNSendoscopyinformationonepracticesUpperreviewgenderauthorincluded10%leastfirst/seniorauthorsauthor:p = 0clinicalOBJECTIVE:assessdataAerodigestiveTractOtolaryngology-HeadNeckSurgerySTUDYDESIGN:NarrativeMETHODS:Fouronlinedatabasessearchedpeer-reviewedarticlespublishedsinceJanuary12017Titleabstractsearchfollowedfull-textscreeningperformedDatasetauditcriteriadeterminedMINIMARstandardspatientdemographiccharacteristicsadditionaffiliationsRESULTS:5737%datasetAmongagesex86%tworace5%ethnicitysocioeconomicstatus84%half53%significantdifferencesratewithout2664p > 09999basedUSvariable79%comparedEurope24%Asia20%0012ratesjournalsdifferentcategoriesfollows:OHNS:44%non-OHNS:40%technical:42%interdisciplinary:CONCLUSIONS:prevalentunderreportingutilizingRoutineimplementedAI-basedhelpminimizealgorithmicbiasespreviouslydemonstratedLEVELOFEVIDENCE:4:Sociodemographicresearch:otolaryngology -headnecksurgeryArtificialintelligenceComputervisionaerodigestivetract

Similar Articles

Cited By