Combining mesocosms with models reveals effects of global warming and ocean acidification on a temperate marine ecosystem.

Hadayet Ullah, Damien A Fordham, Silvan U Goldenberg, Ivan Nagelkerken
Author Information
  1. Hadayet Ullah: Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia. ORCID
  2. Damien A Fordham: The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
  3. Silvan U Goldenberg: Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
  4. Ivan Nagelkerken: Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia. ORCID

Abstract

Ocean warming and species exploitation have already caused large-scale reorganization of biological communities across the world. Accurate projections of future biodiversity change require a comprehensive understanding of how entire communities respond to global change. We combined a time-dynamic integrated food web modeling approach (Ecosim) with previous data from community-level mesocosm experiments to determine the independent and combined effects of ocean warming, ocean acidification and fisheries exploitation on a well-managed temperate coastal ecosystem. The mesocosm parameters enabled important physiological and behavioral responses to climate stressors to be projected for trophic levels ranging from primary producers to top predators, including sharks. Through model simulations, we show that under sustainable rates of fisheries exploitation, near-future warming or ocean acidification in isolation could benefit species biomass at higher trophic levels (e.g., mammals, birds, and demersal finfish) in their current climate ranges, with the exception of small pelagic fishes. However, under warming and acidification combined, biomass increases at higher trophic levels will be lower or absent, while in the longer term reduced productivity of prey species is unlikely to support the increased biomass at the top of the food web. We also show that increases in exploitation will suppress any positive effects of human-driven climate change, causing individual species biomass to decrease at higher trophic levels. Nevertheless, total future potential biomass of some fisheries species in temperate areas might remain high, particularly under acidification, because unharvested opportunistic species will likely benefit from decreased competition and show an increase in biomass. Ecological indicators of species composition such as the Shannon diversity index decline under all climate change scenarios, suggesting a trade-off between biomass gain and functional diversity. By coupling parameters from multilevel mesocosm food web experiments with dynamic food web models, we were able to simulate the generative mechanisms that drive complex responses of temperate marine ecosystems to global change. This approach, which blends theory with experimental data, provides new prospects for forecasting climate-driven biodiversity change and its effects on ecosystem processes.

Keywords

References

  1. Ahrens, R. N. M., C. J. Walters, and V. Christensen. 2012. “Foraging Arena Theory.” Fish and Fisheries 13: 41–59.
  2. Ainsworth, C. H., J. F. Samhouri, D. S. Busch, W. W. L. Cheung, J. Dunne, and T. A. Okey. 2011. “Potential Impacts of Climate Change on Northeast Pacific Marine Foodwebs and Fisheries.” ICES Journal of Marine Science 68: 1217–1229.
  3. Ainsworth, C. H., and T. J. Pitcher. 2006. “Modifying Kempton's Species Diversity Index for Use with Ecosystem Simulation Models.” Ecological Indicators 6: 623–630.
  4. Alsterberg, C., J. S. Eklöf, L. Gamfeldt, J. N. Havenhand, and K. Sundbäck. 2013. “Consumers Mediate the Effects of Experimental Ocean Acidification and Warming on Primary Producers.” Proceedings of the National Academy of Sciences 110: 8603–8608.
  5. Auer, S. K., K. Salin, G. J. Anderson, and N. B. Metcalfe. 2016. “Flexibility in Metabolic Rate and Activity Level Determines Individual Variation in Overwinter Performance.” Oecologia 182: 703–712.
  6. Blanchard, J. L., S. Jennings, R. Holmes, J. Harle, G. Merino, J. I. Allen, J. Holt, N. K. Dulvy, and M. Barange. 2012. “Potential Consequences of Climate Change for Primary Production and Fish Production in Large Marine Ecosystems.” Philosophical Transactions of the Royal Society B‐Biological Sciences 367: 2979–2989.
  7. Bopp, L., L. Resplandy, J. C. Orr, S. C. Doney, J. P. Dunne, M. Gehlen, P. Halloran, et al. 2013. “Multiple Stressors of Ocean Ecosystems in the 21st Century: Projections with CMIP5 Models.” Biogeosciences 10: 6225–6245. https://doi.org/10.5194/bg-10-6225-2013.
  8. Bostrom, C., and J. Mattila. 1999. “The Relative Importance of Food and Shelter for Seagrass‐Associated Invertebrates: A Latitudinal Comparison of Habitat Choice by Isopod Grazers.” Oecologia 120: 162–170. https://doi.org/10.1007/s004420050845.
  9. Bozec, Y.‐M., D. Gascuel, and M. Kulbicki. 2004. “Trophic Model of Lagoonal Communities in a Large Open Atoll (Uvea, Loyalty Islands, New Caledonia)*.” Aquatic Living Resources 17: 151–162.
  10. Brierley, A. S., and M. J. Kingsford. 2009. “Impacts of Climate Change on Marine Organisms and Ecosystems.” Current Biology 19: R602–R614.
  11. Brodeur, R. D., B. E. Smith, R. S. McBride, R. Heintz, and E. Farley. 2017. “New Perspectives on the Feeding Ecology and Trophic Dynamics of Fishes.” Environmental Biology of Fishes 100: 293–297.
  12. Brown, C. J., E. A. Fulton, A. J. Hobday, R. J. Matear, H. P. Possingham, C. Bulman, V. Christensen, et al. 2010. “Effects of Climate‐Driven Primary Production Change on Marine Food Webs: Implications for Fisheries and Conservation.” Global Change Biology 16: 1194–1212.
  13. Capitani, L., N. Roos, G. O. Longo, R. Angelini, and L. Schenone. 2021. “Resource‐to‐Consumer Ratio Determines the Functional Response of an Herbivorous Fish in a Field Experiment.” Oikos 130(12): 2100–2110.
  14. Carpenter, S. R. 1996. “Microcosm Experiments Have Limited Relevance for Community and Ecosystem Ecology.” Ecology 77: 677–680.
  15. Carter, H. A., L. Ceballos‐Osuna, N. A. Miller, and J. H. Stillman. 2013. “Impact of Ocean Acidification on Metabolism and Energetics during Early Life Stages of the Intertidal Porcelain Crab Petrolisthes cinctipes.” The Journal of Experimental Biology 216: 1412–1422.
  16. Cheung, W. W. L. 2018. “The Future of Fishes and Fisheries in the Changing Oceans.” Journal of Fish Biology 92: 790–803.
  17. Cheung, W. W. L., J. Dunne, J. L. Sarmiento, and D. Pauly. 2011. “Integrating Ecophysiology and Plankton Dynamics into Projected Maximum Fisheries Catch Potential under Climate Change in the Northeast Atlantic.” ICES Journal of Marine Science 68: 1008–1018.
  18. Cheung, W. W. L., V. W. Y. Lam, J. L. Sarmiento, K. Kearney, R. Watson, D. Zeller, and D. Pauly. 2010. “Large‐Scale Redistribution of Maximum Fisheries Catch Potential in the Global Ocean under Climate Change.” Global Change Biology 16: 24–35.
  19. Christensen, V., and C. J. Walters. 2004. “Ecopath With Ecosim: Methods, Capabilities and Limitations.” Ecological Modelling 172: 109–139.
  20. Christensen, V., C. Walters, D. Pauly, and R. Forrest. 2008. “Ecopath with Ecosim Version 6 User Guide.” Lenfest Ocean Futures Project: 235.
  21. Clarke, J., P. Whetton, and K. Hennessy. 2011. “Providing Application‐Specific Climate Projections Datasets: CSIRO's Climate Futures Framework.” In MODSIM2011, 19th International Congress on Modelling and Simulation, edited by F. Chan, D. Marinova, and R. S. Anderssen, 2683–2690. Perth, Western Australia: Modelling and Simulation Society of Australia and New Zealand.
  22. Coll, M., and J. Steenbeek. 2017. “Standardized Ecological Indicators to Assess Aquatic Food Webs: The ECOIND Software Plug‐in for Ecopath with Ecosim Models.” Environmental Modelling & Software 89: 120–130.
  23. Cornwall, C. E., and T. D. Eddy. 2015. “Effects of near‐Future Ocean Acidification, Fishing, and Marine Protection on a Temperate Coastal Ecosystem.” Conservation Biology 29: 207–215.
  24. Dixson, D. L., A. R. Jennings, J. Atema, and P. L. Munday. 2015. “Odor Tracking in Sharks Is Reduced under Future Ocean Acidification Conditions.” Global Change Biology 21: 1454–1462. https://doi.org/10.1111/gcb.12678.
  25. Duncan, M. I., A. E. Bates, N. C. James, and W. M. Potts. 2019. “Exploitation May Influence the Climate Resilience of Fish Populations through Removing High Performance Metabolic Phenotypes.” Scientific Reports 9: 11437. https://doi.org/10.1038/s41598-019-47395-y.
  26. Essington, T. E. 2007. “Evaluating the Sensitivity of a Trophic Mass‐Balance Model (Ecopath) to Imprecise Data Inputs.” Canadian Journal of Fisheries and Aquatic Sciences 64: 628–637.
  27. Faulkner, K. T., S. Clusella‐Trullas, L. S. Peck, and S. L. Chown. 2014. “Lack of Coherence in the Warming Responses of Marine Crustaceans.” Functional Ecology 28: 895–903.
  28. Flood, M., I. Stobutzki, J. Andrews, C. Ashby, G. Begg, R. Fletcher, C. Gardner, L. Georgeson, S. Hansen, and K. Hartmann. 2014. “Status of Key Australian Fish Stocks Reports 2014.” https://hdl.handle.net/102.100.100/495810.
  29. Fordham, D. A. 2015. “Mesocosms Reveal Ecological Surprises from Climate Change.” PLoS Biology 13: e1002323.
  30. Fordham, D. A., C. Mellin, B. D. Russell, R. H. Akçakaya, C. J. A. Bradshaw, M. E. Aiello‐Lammens, J. M. Caley, et al. 2013. “Population Dynamics Can be more Important than Physiological Limits for Determining Range Shifts under Climate Change.” Global Change Biology 19: 3224–3237.
  31. Fordham, D. A., F. Saltré, S. C. Brown, C. Mellin, and T. M. L. Wigley. 2018. “Why Decadal to Century Timescale Palaeoclimate Data Are Needed to Explain Present‐Day Patterns of Biological Diversity and Change.” Global Change Biology 24: 1371–1381.
  32. Fordham, D. A., H. Resit Akçakaya, M. B. Araújo, J. Elith, D. A. Keith, R. Pearson, T. D. Auld, et al. 2012. “Plant Extinction Risk under Climate Change: Are Forecast Range Shifts Alone a Good Indicator of Species Vulnerability to Global Warming?” Global Change Biology 18: 1357–1371.
  33. Fordham, D. A., S. Haythorne, and B. W. Brook. 2016. “Sensitivity Analysis of Range Dynamics Models (SARDM): Quantifying the Influence of Parameter Uncertainty on Forecasts of Extinction Risk from Global Change.” Environmental Modelling & Software 83: 193–197.
  34. Free, C. M., J. T. Thorson, M. L. Pinsky, K. L. Oken, J. Wiedenmann, and O. P. Jensen. 2019. “Impacts of Historical Warming on Marine Fisheries Production.” Science 363(6430): 979–983.
  35. Freestone, A. L., E. W. Carroll, K. J. Papacostas, G. M. Ruiz, M. E. Torchin, and B. J. Sewall. 2020. “Predation Shapes Invertebrate Diversity in Tropical but Not Temperate Seagrass Communities.” Journal of Animal Ecology 89(2): 323–333.
  36. Fulton, E. A., A. D. M. Smith, and A. E. Punt. 2005. “Which Ecological Indicators can Robustly Detect Effects of Fishing?” ICES Journal of Marine Science 62: 540–551.
  37. Fulton, E., and R. Gorton. 2014. Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations. Australia: CSIRO.
  38. Fulton, E. A., A. J. Hobday, H. Pethybridge, J. Blanchard, C. Bulman, I. Butler, W. Cheung, et al. 2018. “Decadal Scale Projection of Changes in Australian Fisheries Stocks under Climate Change.” https://hdl.handle.net/102.100.100/495556.
  39. Goldenberg, S. U., I. Nagelkerken, C. M. Ferreira, H. Ullah, and S. D. Connell. 2017. “Boosted Food Web Productivity through Ocean Acidification Collapses under Warming.” Global Change Biology 23: 4177–4184.
  40. Goldenberg, S. U., I. Nagelkerken, E. Marangon, A. Bonnet, C. M. Ferreira, and S. D. Connell. 2018. “Ecological Complexity Buffers the Impacts of Future Climate on Marine Consumers.” Nature Climate Change 8: 229–233.
  41. Griffith, G. P., E. A. Fulton, and A. J. Richardson. 2011. “Effects of Fishing and Acidification‐Related Benthic Mortality on the Southeast Australian Marine Ecosystem.” Global Change Biology 17: 3058–3074.
  42. Guillera‐Arroita, G. 2017. “Modelling of Species Distributions, Range Dynamics and Communities under Imperfect Detection: Advances, Challenges and Opportunities.” Ecography 40: 281–295.
  43. Halpern, B. S., M. Frazier, J. Potapenko, K. S. Casey, K. Koenig, C. Longo, J. S. Lowndes, et al. 2015. “Spatial and Temporal Changes in Cumulative Human Impacts on the World's Ocean.” Nature Communications 6: 7615.
  44. Hansson, L.‐A., A. Nicolle, W. Granéli, P. Hallgren, E. Kritzberg, A. Persson, J. Björk, P. A. Nilsson, and C. Brönmark. 2013. “Food‐Chain Length Alters Community Responses to Global Change in Aquatic Systems.” Nature Climate Change 3: 228–233.
  45. Heymans, J. J., M. Coll, J. S. Link, S. Mackinson, J. Steenbeek, C. Walters, and V. Christensen. 2016. “Best Practice in Ecopath with Ecosim Food‐Web Models for Ecosystem‐Based Management.” Ecological Modelling 331: 173–184.
  46. Hu, N., P. E. Bourdeau, C. Harlos, Y. Liu, and J. Hollander. 2022. “Meta‐Analysis Reveals Variance in Tolerance to Climate Change across Marine Trophic Levels.” Science of the Total Environment 827: 154244.
  47. Jones, J. G. 1979. Guide to Methods for Estimating Microbial Numbers and Biomass in Fresh Water. The Ferry Landing, Ambleside, UK: Freshwater Biological Association.
  48. Kaplan, I. C., P. S. Levin, M. Burden, and E. A. Fulton. 2010. “Fishing Catch Shares in the Face of Global Change: A Framework for Integrating Cumulative Impacts and Single Species Management.” Canadian Journal of Fisheries and Aquatic Sciences 67: 1968–1982.
  49. Koenigstein, S., F. T. Dahlke, M. H. Stiasny, D. Storch, C. Clemmesen, and H.‐O. Pörtner. 2018. “Forecasting Future Recruitment Success for Atlantic Cod in the Warming and Acidifying Barents Sea.” Global Change Biology 24: 526–535.
  50. Koopman, M. T. 2005. Fisheries Ecology of Sand Flathead in Port Phillip Bay. Victoria, Australia: Deakin University.
  51. Korell, L., H. Auge, J. M. Chase, S. Harpole, and T. M. Knight. 2020. “We Need more Realistic Climate Change Experiments for Understanding Ecosystems of the Future.” Global Change Biology 26: 325–327.
  52. Kroeker, K. J., R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte, and J. P. Gattuso. 2013. “Impacts of Ocean Acidification on Marine Organisms: Quantifying Sensitivities and Interaction with Warming.” Global Change Biology 19: 1884–1896.
  53. Lakens, D. 2013. “Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t‐Tests and ANOVAs.” Frontiers in Psychology 4: 863.
  54. Lindmark, M., M. Karlsson, and A. Gårdmark. 2022. “Larger but Younger Fish when Growth Compensates for Higher Mortality in Heated Ecosystem.” bioRxiv. https://doi.org/10.1101/2022.04.13.488128.
  55. Link, J. 2010. Ecosystem‐Based Fisheries Management: Confronting Tradeoffs. Cambridge, UK: Cambridge University Press.
  56. Lord, J. P., J. P. Barry, and D. Graves. 2017. “Impact of Climate Change on Direct and Indirect Species Interactions.” Marine Ecology Progress Series 571: 1–11.
  57. Lough, J. M., and A. J. Hobday. 2011. “Observed Climate Change in Australian Marine and Freshwater Environments.” Marine and Freshwater Research 62: 984–999.
  58. Marino, N. A. C., G. Q. Romero, and V. F. Farjalla. 2018. “Geographical and Experimental Contexts Modulate the Effect of Warming on Top‐Down Control: A Meta‐Analysis.” Ecology Letters 21: 455–466.
  59. Marshall, K. N., I. C. Kaplan, E. E. Hodgson, A. Hermann, D. S. Busch, P. McElhany, T. E. Essington, C. J. Harvey, and E. A. Fulton. 2017. “Risks of Ocean Acidification in the California Current Food Web and Fisheries: Ecosystem Model Projections.” Global Change Biology 23: 1525–1539.
  60. Mellin, C., M. Lurgi, S. Matthews, M. A. MacNeil, M. J. Caley, N. Bax, R. Przeslawski, and D. A. Fordham. 2016. “Forecasting Marine Invasions under Climate Change: Biotic Interactions and Demographic Processes Matter.” Biological Conservation 204: 459–467.
  61. Melzner, F., M. Gutowska, M. Langenbuch, S. Dupont, M. Lucassen, M. Thorndyke, M. Bleich, and H. O. Pörtner. 2009. “Physiological Basis for High CO2 Tolerance in Marine Ectothermic Animals: Pre‐Adaptation through Lifestyle and Ontogeny?” Biogeosciences 6: 2313–2331.
  62. Merino, G., M. Barange, J. L. Blanchard, J. Harle, R. Holmes, I. Allen, E. H. Allison, et al. 2012. “Can Marine Fisheries and Aquaculture Meet Fish Demand from a Growing Human Population in a Changing Climate?” Global Environmental Change 22: 795–806.
  63. Murray, A., and J. Parslow. 1997. “Port Phillip Bay Integrated Model: Final Report.” Port Phillip Bay Environmental Study, CSIRO Environmental Projects Office.
  64. Nagelkerken, I., S. U. Goldenberg, C. M. Ferreira, B. D. Russell, and S. D. Connell. 2017. “Species Interactions Drive Fish Biodiversity Loss in a High‐CO2 World.” Current Biology 27: 2177–2184.e4.
  65. Nagelkerken, I., S. U. Goldenberg, C. M. Ferreira, H. Ullah, and S. D. Connell. 2020. “Trophic Pyramids Reorganize when Food Web Architecture Fails to Adjust to Ocean Change.” Science 369: 829–832.
  66. Nagelkerken, I., and S. D. Connell. 2015. “Global Alteration of Ocean Ecosystem Functioning Due to Increasing Human CO2 Emissions.” Proceedings of the National Academy of Sciences 112: 13272–13277.
  67. Olsen, E., G. Fay, S. Gaichas, R. Gamble, S. Lucey, and J. S. Link. 2016. “Ecosystem Model Skill Assessment. Yes we Can!” PLoS One 11: e0146467.
  68. Olsen, E., I. C. Kaplan, C. Ainsworth, G. Fay, S. Gaichas, R. Gamble, R. Girardin, et al. 2018. “Ocean Futures under Ocean Acidification, Marine Protection, and Changing Fishing Pressures Explored Using a Worldwide Suite of Ecosystem Models.” Frontiers in Marine Science 5: 5.
  69. Pörtner, H. O., M. Langenbuch, and B. Michaelidis. 2005. “Synergistic Effects of Temperature Extremes, Hypoxia, and Increases in CO2 on Marine Animals: From Earth History to Global Change.” Journal of Geophysical Research: Oceans 110(C9): C09S10.
  70. Peterson, A. T., M. A. Ortega‐Huerta, J. Bartley, V. Sánchez‐Cordero, J. Soberón, R. H. Buddemeier, and D. R. B. Stockwell. 2002. “Future Projections for Mexican Faunas under Global Climate Change Scenarios.” Nature 416: 626–629.
  71. Pinkerton, M. H., C. J. Lundquist, C. A. J. Duffy, and D. J. Freeman. 2008. “Trophic Modelling of a New Zealand Rocky Reef Ecosystem Using Simultaneous Adjustment of Diet, Biomass and Energetic Parameters.” Journal of Experimental Marine Biology and Ecology 367: 189–203.
  72. Pistevos, J. C. A., I. Nagelkerken, T. Rossi, M. Olmos, and S. D. Connell. 2015. “Ocean Acidification and Global Warming Impair Shark Hunting Behaviour and Growth.” Scientific Reports 5: 16293.
  73. Plaganyi, E. E., and D. S. Butterworth. 2004. “A Critical Look at the Potential of ECOPATH with ECOSIM to Assist in Practical Fisheries Management.” African Journal of Marine Science 26: 261–287.
  74. Poore, A. G. B., A. Graba‐Landry, M. Favret, H. Sheppard Brennand, M. Byrne, and S. A. Dworjanyn. 2013. “Direct and Indirect Effects of Ocean Acidification and Warming on a Marine Plant–Herbivore Interaction.” Oecologia 173: 1113–1124.
  75. Sagarin, R. D., J. Adams, C. A. Blanchette, R. C. Brusca, J. Chorover, J. E. Cole, F. Micheli, et al. 2016. “Between Control and Complexity: Opportunities and Challenges for Marine Mesocosms.” Frontiers in Ecology and the Environment 14: 389–396.
  76. Shannon, C. E., and W. Weaver. 1963. The Mathematical Theory of Communication. 1949. Urbana: University of Illinois Press.
  77. Sswat, M., M. H. Stiasny, J. Taucher, M. Algueró‐Muñiz, L. T. Bach, F. Jutfelt, U. Riebesell, and C. Clemmesen. 2018. “Food Web Changes under Ocean Acidification Promote Herring Larvae Survival.” Nature Ecology & Evolution 2: 836–840.
  78. Stewart, R. I., M. Dossena, D. A. Bohan, E. Jeppesen, R. L. Kordas, M. E. Ledger, M. Meerhoff, et al. 2013. “Mesocosm Experiments as a Tool for Ecological Climate‐Change Research.” Advances in Ecological Research 48: 71–181.
  79. Stow, C. A., J. Jolliff, D. J. McGillicuddy, S. C. Doney, J. I. Allen, M. A. M. Friedrichs, K. A. Rose, and P. Wallhead. 2009. “Skill Assessment for Coupled Biological/Physical Models of Marine Systems.” Journal of Marine Systems 76: 4–15.
  80. Sumaila, U. R., and T. C. Tai. 2020. “End Overfishing and Increase the Resilience of the Ocean to Climate Change.” Frontiers in Marine Science 7: 523. https://doi.org/10.3389/fmars.2020.00523.
  81. Ullah, H., D. Fordham, S. Goldenberg, and I. Nagelkerken. 2024. “Data from: Combining Mesocosms with Models to Unravel the Effects of Global Warming and Ocean Acidification on a Temperate Marine Ecosystem.” Dryad, Dataset. https://doi.org/10.5061/dryad.jwstqjqgk.
  82. Ullah, H., I. Nagelkerken, S. U. Goldenberg, and D. A. Fordham. 2018. “Climate Change Could Drive Marine Food Web Collapse through Altered Trophic Flows and Cyanobacterial Proliferation.” PLoS Biology 16: e2003446.
  83. VFA. 2016. Victorian Fisheries Authority Commercial Fish Production Information Bulletin 2017. Queenscliff: Victorian Fisheries Authority.
  84. Wabnitz, C. C. C., G. Balazs, S. Beavers, K. A. Bjorndal, A. B. Bolten, V. Christensen, S. Hargrove, and D. Pauly. 2010. “Ecosystem Structure and Processes at Kaloko Honokōhau, Focusing on the Role of Herbivores, Including the Green Sea Turtle Chelonia Mydas, in Reef Resilience.” Marine Ecology Progress Series 420: 27–44.
  85. Woodruff, D. S. 2001. “Declines of Biomes and Biotas and the Future of Evolution.” Proceedings of the National Academy of Sciences 98: 5471–5476.
  86. Zeng, L.‐Q., L. Wang, G.‐N. Wang, Y. Zeng, and S.‐J. Fu. 2017. “The Relationship between Growth Performance and Metabolic Rate Flexibility Varies with Food Availability in Juvenile Qingbo (Spinibarbus sinensis).” Comparative Biochemistry and Physiology—Part A 212: 56–63.

Grants

  1. FT120100183/Australian Research Council

MeSH Term

Global Warming
Animals
Models, Biological
Oceans and Seas
Seawater
Food Chain
Hydrogen-Ion Concentration
Ecosystem
Biomass
Fisheries
Climate Change
Ocean Acidification

Word Cloud

Created with Highcharts 10.0.0specieschangebiomasswarmingexploitationfoodwebacidificationclimatetrophiceffectsoceanfisheriestemperatelevelsbiodiversityglobalcombinedmesocosmecosystemshowhigherwillmodelscommunitiesfuturemodelingapproachdataexperimentsparametersresponsesstressorstopbenefitincreasesdiversitymarineOceanalreadycausedlarge-scalereorganizationbiologicalacrossworldAccurateprojectionsrequirecomprehensiveunderstandingentirerespondtime-dynamicintegratedEcosimpreviouscommunity-leveldetermineindependentwell-managedcoastalenabledimportantphysiologicalbehavioralprojectedrangingprimaryproducerspredatorsincludingsharksmodelsimulationssustainableratesnear-futureisolationegmammalsbirdsdemersalfinfishcurrentrangesexceptionsmallpelagicfishesHoweverlowerabsentlongertermreducedproductivitypreyunlikelysupportincreasedalsosuppresspositivehuman-drivencausingindividualdecreaseNeverthelesstotalpotentialareasmightremainhighparticularlyunharvestedopportunisticlikelydecreasedcompetitionincreaseEcologicalindicatorscompositionShannonindexdeclinescenariossuggestingtrade-offgainfunctionalcouplingmultileveldynamicablesimulategenerativemechanismsdrivecomplexecosystemsblendstheoryexperimentalprovidesnewprospectsforecastingclimate-drivenprocessesCombiningmesocosmsrevealsmultipleinteractions

Similar Articles

Cited By