Early identification of a ward-based outbreak of using prospective multilocus sequence type-based Oxford Nanopore genomic surveillance.

Max Bloomfield, Samantha Hutton, Megan Burton, Claire Tarring, Charles Velasco, Carolyn Clissold, Michelle Balm, Matthew Kelly, Donia Macartney-Coxson, Rhys White
Author Information
  1. Max Bloomfield: Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand. ORCID
  2. Samantha Hutton: Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand.
  3. Megan Burton: Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand.
  4. Claire Tarring: Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand.
  5. Charles Velasco: Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand.
  6. Carolyn Clissold: Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand.
  7. Michelle Balm: Awanui Labs Wellington, Department of Microbiology and Molecular Pathology, Wellington, New Zealand.
  8. Matthew Kelly: Te Whatu Ora/Health New Zealand, Infection Prevention and Control, Capital, Coast and Hutt Valley, Wellington, New Zealand.
  9. Donia Macartney-Coxson: Institute of Environmental Science and Research, Health Group, Porirua, New Zealand. ORCID
  10. Rhys White: Institute of Environmental Science and Research, Health Group, Porirua, New Zealand. ORCID

Abstract

OBJECTIVE: To describe an outbreak of sequence type (ST)2 infection (CDI) detected by a recently implemented multilocus sequence type (MLST)-based prospective genomic surveillance system using Oxford Nanopore Technologies (ONT) sequencing.
SETTING: Hemato-oncology ward of a public tertiary referral centre.
METHODS: From February 2022, we began prospectively sequencing all isolated from inpatients at our institution on the ONT MinION device, with the output being an MLST. Bed-movement data are used to construct real-time ST-specific incidence charts based on ward exposures over the preceding three months.
RESULTS: Between February and October 2022, 76 of 118 (64.4%) CDI cases were successfully sequenced. There was wide ST variation across cases and the hospital, with only four different STs being seen in >4 patients. A clear predominance of ST2 CDI cases emerged among patients with exposure to our hemato-oncology ward between May and October 2022, which totalled ten patients. There was no detectable rise in overall CDI incidence for the ward or hospital due to the outbreak. Following a change in cleaning product to an accelerated hydrogen peroxide wipe and several other interventions, no further outbreak-associated ST2 cases were detected. A retrospective phylogenetic analysis using original sequence data showed clustering of the suspected outbreak cases, with the exception of two cases that were retrospectively excluded from the outbreak.
CONCLUSIONS: Prospective genomic surveillance of using ONT sequencing permitted the identification of an outbreak of ST2 CDI that would have otherwise gone undetected.

References

  1. JAMA Intern Med. 2016 Dec 01;176(12):1801-1808 [PMID: 27723860]
  2. Am J Infect Control. 2017 Jan 1;45(1):51-58 [PMID: 28065332]
  3. J Hosp Infect. 1999 Oct;43(2):85-100 [PMID: 10549308]
  4. Clin Microbiol Infect. 2018 May;24(5):469-475 [PMID: 29274463]
  5. Infect Control Hosp Epidemiol. 2010 Jan;31(1):21-7 [PMID: 19929371]
  6. J Clin Microbiol. 2023 Apr 20;61(4):e0163122 [PMID: 36988494]
  7. Pathology. 2024 Apr;56(3):444-447 [PMID: 37867010]
  8. Clin Colon Rectal Surg. 2020 Mar;33(2):73-81 [PMID: 32104159]
  9. N Engl J Med. 2013 Sep 26;369(13):1195-205 [PMID: 24066741]
  10. J Clin Microbiol. 2012 Apr;50(4):1355-61 [PMID: 22238442]
  11. Infect Control Hosp Epidemiol. 2011 Mar;32(3):201-6 [PMID: 21460503]
  12. BMC Res Notes. 2014 Sep 08;7:618 [PMID: 25201145]
  13. PLoS One. 2021 Oct 1;16(10):e0257521 [PMID: 34597327]
  14. Infect Control Hosp Epidemiol. 2019 Feb;40(2):265-266 [PMID: 30457076]
  15. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  16. Int J Med Microbiol. 2019 May - Jun;309(3-4):189-193 [PMID: 30879971]
  17. PeerJ. 2018 Jul 31;6:e5233 [PMID: 30083440]
  18. Infect Control Hosp Epidemiol. 2023 Apr;44(4):527-549 [PMID: 37042243]
  19. Euro Surveill. 2022 Dec;27(49): [PMID: 36695439]
  20. Clin Infect Dis. 2000 Sep;31(3):717-22 [PMID: 11017821]
  21. Infect Control Hosp Epidemiol. 2021 Jul;42(7):847-852 [PMID: 33261688]
  22. J Clin Microbiol. 2021 Jan 21;59(2): [PMID: 33177119]
  23. J Med Microbiol. 2013 Sep;62(Pt 9):1423-1427 [PMID: 23579394]
  24. Genome Biol. 2014;15(11):524 [PMID: 25410596]
  25. Nat Med. 2023 Oct;29(10):2526-2534 [PMID: 37723252]
  26. Clin Infect Dis. 2008 Jan 15;46 Suppl 1:S43-9 [PMID: 18177221]
  27. N Engl J Med. 2011 Nov 3;365(18):1693-703 [PMID: 22047560]
  28. mBio. 2024 Mar 13;15(3):e0330023 [PMID: 38329369]
  29. Antimicrob Resist Infect Control. 2017 Jun 3;6:54 [PMID: 28588767]
  30. Yonsei Med J. 2014 Jul;55(4):994-8 [PMID: 24954329]
  31. Am J Infect Control. 2013 May;41(5 Suppl):S105-10 [PMID: 23622740]
  32. Infect Control Hosp Epidemiol. 2015 Nov;36(11):1348-50 [PMID: 26315659]
  33. Antimicrob Resist Infect Control. 2023 Sep 7;12(1):94 [PMID: 37679758]
  34. Microbiol Spectr. 2022 Feb 23;10(1):e0132221 [PMID: 35019676]
  35. Infect Control Hosp Epidemiol. 2023 Dec;44(12):1948-1952 [PMID: 37350244]
  36. Clin Colon Rectal Surg. 2020 Mar;33(2):49-57 [PMID: 32104156]
  37. BMC Infect Dis. 2015 Nov 14;15:516 [PMID: 26573915]
  38. Sci Rep. 2019 May 6;9(1):6959 [PMID: 31061423]
  39. Mol Microbiol. 2006 Jun;60(5):1136-51 [PMID: 16689791]
  40. Am J Infect Control. 2022 Dec;50(12):1352-1354 [PMID: 35217092]
  41. Front Microbiol. 2021 Jul 05;12:651520 [PMID: 34290677]