Lipidation of pneumococcal proteins enables activation of human antigen-presenting cells and initiation of an adaptive immune response.

Antje D Paulikat, Dominik Schwudke, Sven Hammerschmidt, Franziska Voß
Author Information
  1. Antje D Paulikat: Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany.
  2. Dominik Schwudke: Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany.
  3. Sven Hammerschmidt: Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany.
  4. Franziska Voß: Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany.

Abstract

remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2122386119 [PMID: 35648835]
  2. mBio. 2020 May 19;11(3): [PMID: 32430472]
  3. J Innate Immun. 2022;14(5):569-580 [PMID: 35249041]
  4. Cell Host Microbe. 2011 Feb 17;9(2):158-65 [PMID: 21320698]
  5. FEBS Lett. 2016 Nov;590(21):3820-3839 [PMID: 27508940]
  6. Immun Inflamm Dis. 2022 Dec;10(12):e735 [PMID: 36444618]
  7. Sci Rep. 2016 Jul 29;6:30648 [PMID: 27470096]
  8. PLoS Pathog. 2008 Sep 19;4(9):e1000159 [PMID: 18802458]
  9. Innate Immun. 2020 Aug;26(6):482-489 [PMID: 32345091]
  10. Annu Rev Immunol. 2000;18:767-811 [PMID: 10837075]
  11. Mucosal Immunol. 2015 May;8(3):627-39 [PMID: 25354319]
  12. J Infect Dis. 2008 Dec 15;198(12):1823-33 [PMID: 18945182]
  13. J Korean Med Sci. 2013 Jan;28(1):4-15 [PMID: 23341706]
  14. J Vis Exp. 2014 Feb 23;(84):e51174 [PMID: 24637643]
  15. PLoS One. 2017 Jan 6;12(1):e0169368 [PMID: 28061505]
  16. Vaccine. 2022 Jun 23;40(29):3963-3974 [PMID: 35637067]
  17. Biomed Res Int. 2015;2015:521957 [PMID: 26583116]
  18. Nature. 1998 Mar 19;392(6673):245-52 [PMID: 9521319]
  19. mBio. 2018 Apr 10;9(2): [PMID: 29636428]
  20. Annu Rev Immunol. 1991;9:271-96 [PMID: 1910679]
  21. PLoS One. 2012;7(7):e39150 [PMID: 22815698]
  22. J Immunol. 2014 Oct 1;193(7):3736-45 [PMID: 25172490]
  23. Immunology. 2022 Nov;167(3):413-427 [PMID: 35835695]
  24. PLoS One. 2011;6(5):e19781 [PMID: 21611194]
  25. Vaccine. 2000 Feb 25;18(16):1707-11 [PMID: 10689153]
  26. Eur J Immunol. 2017 Mar;47(3):540-551 [PMID: 28101913]
  27. Lancet. 2009 Sep 12;374(9693):893-902 [PMID: 19748398]
  28. FASEB J. 2007 Oct;21(12):3118-32 [PMID: 17507668]
  29. J Mol Biol. 2021 Jan 22;433(2):166723 [PMID: 33242497]
  30. Sci Rep. 2022 Mar 7;12(1):3990 [PMID: 35256717]
  31. Clin Vaccine Immunol. 2015 Aug;22(8):909-16 [PMID: 26041040]
  32. Trends Immunol. 2002 Nov;23(11):526-9 [PMID: 12401404]
  33. Sci Rep. 2016 Dec 05;6:38094 [PMID: 27917891]
  34. Mol Microbiol. 2014 Sep;93(6):1183-206 [PMID: 25060741]
  35. Cold Spring Harb Perspect Biol. 2018 Oct 1;10(10): [PMID: 28847903]
  36. Infect Immun. 2022 May 19;90(5):e0067821 [PMID: 35435727]
  37. Infect Dis Ther. 2023 Jul;12(7):1809-1821 [PMID: 37318710]
  38. Vaccines (Basel). 2020 Jun 17;8(2): [PMID: 32560374]
  39. Lancet Infect Dis. 2018 Nov;18(11):1191-1210 [PMID: 30243584]
  40. Structure. 2014 Jul 8;22(7):949-60 [PMID: 24909784]
  41. Expert Rev Vaccines. 2015 Jun;14(6):841-59 [PMID: 25704037]
  42. Front Aging. 2021 Nov 03;2:746295 [PMID: 35822055]
  43. mBio. 2014 Dec 23;5(6): [PMID: 25538192]
  44. J Proteome Res. 2014 Feb 7;13(2):650-67 [PMID: 24387739]
  45. EMBO Mol Med. 2009 Jul;1(4):211-22 [PMID: 20049723]
  46. Nat Microbiol. 2019 Jan;4(1):62-70 [PMID: 30420782]
  47. J Bacteriol. 2011 May;193(9):2290-300 [PMID: 21378199]
  48. Lancet. 2011 Dec 3;378(9807):1962-73 [PMID: 21492929]
  49. Vaccine. 2024 Mar 7;42(7):1435-1439 [PMID: 38336559]
  50. Clin Vaccine Immunol. 2010 Jun;17(6):1005-12 [PMID: 20427625]
  51. Front Immunol. 2018 Oct 18;9:2405 [PMID: 30405609]
  52. J Immune Based Ther Vaccines. 2011 Jul 29;9:5 [PMID: 21801401]
  53. J Clin Invest. 2009 Jul;119(7):1899-909 [PMID: 19509469]
  54. PLoS One. 2013;8(1):e49638 [PMID: 23349662]
  55. Infect Immun. 2014 May;82(5):2079-86 [PMID: 24614661]

MeSH Term

Humans
Streptococcus pneumoniae
Adaptive Immunity
Cytokines
Bacterial Proteins
Lipoproteins
Dendritic Cells
Antigen-Presenting Cells
Pneumococcal Vaccines
Pneumococcal Infections
Macrophages
Cells, Cultured

Chemicals

Cytokines
Bacterial Proteins
Lipoproteins
Pneumococcal Vaccines

Word Cloud

Created with Highcharts 10.0.0cellsimmunelipoproteinspotentialhumanpneumococcalresponsevaccineDacBresponsesactivationlipidationdendriticinduceimportantsurfaceinsightsMetQnon-lipidatedstimulationfindingsantigen-presentingproteinsLipDacBLipMetQadaptiveremainssignificantglobalthreatexistingvaccineslimitationsrestrictedserotypecoveragehighmanufacturingcostsPneumococcalemergingpromisingcandidatesdueexposureconservationacrossvariousserotypespriorstudiesexploredmicedatacontextimpactlipidmoietyremainlimitedpresentstudyexaminedimmunogenicitytwolipidatedversionsprimaryImmuneassessedexpressioncommonmarkersmaturationwellcytokinesreleasedsupernatantindicatecasecrucialmacrophagesdemonstratedintrinsicinnateNeverthelessenhancedInterestinglyfollowingcytokinelevelsIL-6IL-23significantlyincreasedimplicatedtriggeringpotentiallyTh17cellFurthermoreableproliferationCD4+TindicatingcontributevaluableimmunogenicpropertiesemphasizingroledevelopmentinfectionsLipidationenablesinitiationStreptococcuspneumoniaeantigenpresenting

Similar Articles

Cited By