LYVE-1-expressing Macrophages Modulate the Hyaluronan-containing Extracellular Matrix in the Mammary Stroma and Contribute to Mammary Tumor Growth.
Alexis K Elfstrum, Annisa H Rumahorbo, Lyndsay E Reese, Emma V Nelson, Braedan M McCluskey, Kathryn L Schwertfeger
Author Information
Alexis K Elfstrum: Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota. ORCID
Annisa H Rumahorbo: Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota. ORCID
Lyndsay E Reese: Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota. ORCID
Emma V Nelson: Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota. ORCID
Braedan M McCluskey: University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota. ORCID
Kathryn L Schwertfeger: Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota. ORCID
中文译文
English
Macrophages represent a heterogeneous myeloid population with diverse functions in normal tissues and tumors. While macrophages expressing the cell surface marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) have been identified in stromal regions of the normal mammary gland and in the peritumoral stroma, their functions within these regions are not well understood. Using a genetic mouse model of LYVE-1+ macrophage depletion, we demonstrate that loss of LYVE-1+ macrophages is associated with altered extracellular matrix remodeling in the normal mammary gland and reduced mammary tumor growth in vivo. In further studies focused on investigating the functions of LYVE-1+ macrophages in the tumor microenvironment, we demonstrate that LYVE-1 expression correlates with an increased ability of macrophages to bind, internalize, and degrade hyaluronan. Consistent with this, we show that depletion of LYVE-1+ macrophages correlates with increased hyaluronan accumulation in both the normal mammary gland and in mammary tumors. Analysis of single-cell RNA sequencing of macrophages isolated from these tumors reveals that depletion of LYVE-1+ macrophages in tumors drives a shift in the majority of the remaining macrophages toward a proinflammatory phenotype, as well as an increase in CD8+ T-cell infiltration. Together, these findings indicate that LYVE-1+ macrophages represent a tumor-promoting anti-inflammatory subset of macrophages that contributes to hyaluronan remodeling in the tumor microenvironment. SIGNIFICANCE: We have identified a macrophage subset in mouse mammary tumors associated with tumor structural components. When this macrophage subset is absent in tumors, we report a delay in tumor growth and an increase in antitumor immune cells. Understanding the functions of distinct macrophage subsets may allow for improved therapeutic strategies for patients with breast cancer.
J Biol Chem. 2010 Apr 2;285(14):10724-35
[PMID: 19887450 ]
Innovation (Camb). 2021 Jul 01;2(3):100141
[PMID: 34557778 ]
Int J Cancer. 2011 Mar 15;128(6):1303-15
[PMID: 20473947 ]
J Biol Chem. 2016 Apr 8;291(15):8014-30
[PMID: 26823460 ]
Biomed Pharmacother. 2019 Sep;117:109096
[PMID: 31202170 ]
Eur J Immunol. 2002 Jun;32(6):1726-36
[PMID: 12115656 ]
Cells. 2019 Aug 07;8(8):
[PMID: 31394830 ]
Cell Metab. 2019 Jun 4;29(6):1363-1375.e8
[PMID: 30745181 ]
J Biomed Sci. 2019 Oct 20;26(1):78
[PMID: 31629410 ]
Immunity. 2018 Aug 21;49(2):326-341.e7
[PMID: 30054204 ]
Sci Immunol. 2022 Jan 07;7(67):eabf7777
[PMID: 34995099 ]
Sci Adv. 2021 Nov 05;7(45):eabg9518
[PMID: 34730997 ]
Blood. 2012 Aug 30;120(9):1899-907
[PMID: 22797697 ]
J Mammary Gland Biol Neoplasia. 2023 Jan 27;28(1):1
[PMID: 36723776 ]
J Pathol. 2006 May;209(1):67-77
[PMID: 16482496 ]
Nat Immunol. 2007 Oct;8(10):1086-94
[PMID: 17873879 ]
Front Immunol. 2020 Dec 03;11:583084
[PMID: 33365025 ]
FEBS J. 2010 Apr;277(7):1776-86
[PMID: 20193045 ]
Cell. 2022 Mar 31;185(7):1189-1207.e25
[PMID: 35325594 ]
Mol Cancer Ther. 2010 Nov;9(11):3024-32
[PMID: 20833754 ]
Nat Cancer. 2022 Dec;3(12):1513-1533
[PMID: 36482233 ]
Genome Biol. 2020 Aug 6;21(1):196
[PMID: 32762710 ]
J Biol Chem. 1997 Dec 12;272(50):31730-7
[PMID: 9395517 ]
Mini Rev Med Chem. 2014;14(14):1132-8
[PMID: 25643611 ]
J Biol Chem. 2007 Feb 23;282(8):5597-607
[PMID: 17170110 ]
Cancer Cell Int. 2020 Jul 20;20:328
[PMID: 32699527 ]
Cancer Res. 2018 Nov 15;78(22):6473-6485
[PMID: 30254150 ]
Cell. 2021 Jun 24;184(13):3573-3587.e29
[PMID: 34062119 ]
Cancer Res. 2013 Feb 1;73(3):1180-9
[PMID: 23243023 ]
Front Oncol. 2020 Sep 24;10:569985
[PMID: 33072601 ]
Cancer Immunol Res. 2023 Nov 1;11(11):1462-1479
[PMID: 37603945 ]
J Exp Med. 2016 Oct 17;213(11):2315-2331
[PMID: 27697834 ]
J Biol Chem. 2001 Jun 1;276(22):19420-30
[PMID: 11278811 ]
J Exp Med. 2021 Dec 6;218(12):
[PMID: 34714329 ]
Nat Commun. 2019 Sep 2;10(1):3928
[PMID: 31477692 ]
Mol Cancer. 2022 Mar 19;21(1):80
[PMID: 35305647 ]
Cancer Res. 2021 Oct 15;81(20):5284-5295
[PMID: 34389631 ]
Cancer Immunol Res. 2019 Jul;7(7):1091-1105
[PMID: 31164356 ]
Int J Mol Med. 2021 Apr;47(4):
[PMID: 33604683 ]
Cancer. 1992 Dec 15;70(12):2747-53
[PMID: 1451050 ]
J Cell Physiol. 2019 Sep;234(9):15581-15593
[PMID: 30706473 ]
Nature. 2013 Jul 18;499(7458):346-9
[PMID: 23783513 ]
Immunity. 2023 Jul 11;56(7):1561-1577.e9
[PMID: 37402364 ]
Oncotarget. 2017 Oct 10;8(61):103682-103692
[PMID: 29262593 ]
Acta Biomater. 2017 Mar 1;50:259-270
[PMID: 27965172 ]
Cancer Cell. 2021 Jul 12;39(7):973-988.e9
[PMID: 34115989 ]
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):562-567
[PMID: 28031488 ]
Cancer Res. 2021 Aug 15;81(16):4305-4318
[PMID: 34049975 ]
PLoS Biol. 2022 Oct 24;20(10):e3001858
[PMID: 36279312 ]
Am J Pathol. 2009 Nov;175(5):2023-33
[PMID: 19808647 ]
Cancer Res. 2015 Apr 1;75(7):1322-31
[PMID: 25600645 ]
Am J Pathol. 2000 Feb;156(2):529-36
[PMID: 10666382 ]
Oncol Lett. 2022 Dec 08;25(1):39
[PMID: 36589661 ]
Cancer Res. 2022 Sep 16;82(18):3291-3306
[PMID: 35862581 ]
Exp Cell Res. 2015 Sep 10;337(1):1-15
[PMID: 26222208 ]
Medicine (Baltimore). 2020 May 29;99(22):e20438
[PMID: 32481447 ]
Carcinogenesis. 2004 Aug;25(8):1543-9
[PMID: 15044327 ]
Mol Cell Biol. 2007 Jan;27(2):595-604
[PMID: 17101772 ]
Immunol Lett. 2004 Sep;95(2):113-28
[PMID: 15388251 ]
Sci Rep. 2022 Mar 11;12(1):4295
[PMID: 35277559 ]
Cancer Sci. 2008 Sep;99(9):1720-5
[PMID: 18564137 ]
Cell Metab. 2019 Nov 5;30(5):917-936.e10
[PMID: 31447322 ]
J Cell Biol. 2013 Sep 16;202(6):951-66
[PMID: 24019537 ]
Genome Biol. 2021 Jan 4;22(1):4
[PMID: 33397441 ]
J Exp Med. 2020 Apr 6;217(4):
[PMID: 31951251 ]
Cell. 2021 May 27;184(11):2988-3005.e16
[PMID: 34019793 ]
Elife. 2020 Jun 01;9:
[PMID: 32479261 ]
Science. 2019 Mar 15;363(6432):
[PMID: 30872492 ]
Cell Rep. 2022 May 24;39(8):110865
[PMID: 35613577 ]
Biomolecules. 2021 Oct 20;11(11):
[PMID: 34827550 ]
Nat Rev Drug Discov. 2022 Nov;21(11):799-820
[PMID: 35974096 ]
Nat Commun. 2017 Jan 16;8:14049
[PMID: 28091601 ]
Immunol Rev. 2014 Nov;262(1):36-55
[PMID: 25319326 ]
Mol Immunol. 2007 Jan;44(1-3):33-43
[PMID: 16908067 ]
T32 AI007313/NIAID NIH HHS
R01HD106929/HHS | National Institutes of Health (NIH)
R01 CA265004/NCI NIH HHS
R01HD95858/HHS | National Institutes of Health (NIH)
R01 HD106929/NICHD NIH HHS
R01 HD095858/NICHD NIH HHS
R01CA215052/HHS | National Institutes of Health (NIH)
R01 CA215052/NCI NIH HHS
R01CA265004/HHS | National Institutes of Health (NIH)
UL1 TR002494/NCATS NIH HHS
T32AI007313/HHS | National Institutes of Health (NIH)
Animals
Female
Mice
Breast Neoplasms
Extracellular Matrix
Hyaluronic Acid
Macrophages
Mammary Glands, Animal
Mammary Neoplasms, Experimental
Stromal Cells
Tumor Microenvironment
Vesicular Transport Proteins
Hyaluronic Acid
LYVE1 protein, mouse
Vesicular Transport Proteins