Nitrile Vibrational Lifetimes as Probes of Local Electric Fields.

Philip A Kocheril, Haomin Wang, Dongkwan Lee, Noor Naji, Lu Wei
Author Information
  1. Philip A Kocheril: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States. ORCID
  2. Haomin Wang: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States. ORCID
  3. Dongkwan Lee: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States. ORCID
  4. Noor Naji: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
  5. Lu Wei: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States. ORCID

Abstract

Optical measurements of electric fields have wide-ranging applications in the fields of chemistry and biology. Previously, such measurements focused on shifts in intensity or frequency. Here, we show that nitrile vibrational lifetimes can report local electric fields through ultrasensitive picosecond mid-infrared-near-infrared double-resonance fluorescence spectro-microscopy on Rhodamine 800. Using a robust convolution fitting approach, we observe that the nitrile vibrational lifetimes are strongly linearly correlated ( = 0.841) with solvent reaction fields. Supported by density functional theory, we rationalize this trend through a doorway model of intramolecular vibrational energy redistribution. This work provides new fundamental insights into the nature of vibrational energy flow in large polyatomic molecular systems and establishes a theoretical basis for electric field sensing with vibrational lifetimes, offering a new experimental dimension for probing intracellular electrostatics.

References

  1. J Chem Phys. 2004 Apr 22;120(16):7410-7 [PMID: 15267651]
  2. J Am Chem Soc. 2022 May 4;144(17):7562-7567 [PMID: 35467853]
  3. Phys Rev Lett. 2022 Nov 11;129(20):207401 [PMID: 36461997]
  4. Nature. 2006 Nov 16;444(7117):347-9 [PMID: 17108960]
  5. J Phys Chem B. 2013 Dec 19;117(50):16236-48 [PMID: 24304155]
  6. J Biochem. 1997 Jan;121(1):29-37 [PMID: 9058188]
  7. J Am Chem Soc. 2012 Jun 27;134(25):10373-6 [PMID: 22694663]
  8. Phys Chem Chem Phys. 2007 Mar 14;9(10):1170-85 [PMID: 17325763]
  9. Nat Commun. 2019 Oct 18;10(1):4764 [PMID: 31628307]
  10. J Am Chem Soc. 2024 Mar 13;146(10):6983-6991 [PMID: 38415598]
  11. Science. 2006 Jul 14;313(5784):200-4 [PMID: 16840693]
  12. Biomed J. 2022 Oct;45(5):749-762 [PMID: 35667642]
  13. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  14. J Am Chem Soc. 2021 Jul 28;143(29):10809-10815 [PMID: 34270255]
  15. JACS Au. 2022 Jan 28;2(2):472-482 [PMID: 35252996]
  16. Nat Chem. 2016 Nov 22;8(12):1091-1098 [PMID: 27874869]
  17. J Am Chem Soc. 2021 Sep 15;143(36):14511-14522 [PMID: 34474559]
  18. J Phys Chem Lett. 2021 Aug 19;12(32):7818-7825 [PMID: 34378946]
  19. J Chem Phys. 2023 Nov 21;159(19): [PMID: 37966137]
  20. Biochemistry. 2003 Oct 21;42(41):12050-5 [PMID: 14556636]
  21. Nature. 2016 Mar 3;531(7592):88-91 [PMID: 26935697]
  22. J Phys Chem B. 2010 Oct 28;114(42):13536-44 [PMID: 20883003]
  23. J Phys Chem Lett. 2019 Apr 18;10(8):1967-1972 [PMID: 30942587]
  24. Biochemistry. 2008 Feb 12;47(6):1588-98 [PMID: 18205401]
  25. Opt Express. 2021 Aug 30;29(18):28246-28256 [PMID: 34614960]
  26. Chem Biomed Imaging. 2023 Mar 28;1(1):3-17 [PMID: 37122829]
  27. Analyst. 2016 Mar 7;141(5):1569-86 [PMID: 26846180]
  28. Neuron. 2011 Jan 13;69(1):9-21 [PMID: 21220095]
  29. J Phys Chem A. 2018 Aug 30;122(34):6856-6863 [PMID: 30091602]
  30. J Phys Chem Lett. 2016 Apr 7;7(7):1281-7 [PMID: 26990401]
  31. J Am Chem Soc. 2010 Sep 22;132(37):12811-3 [PMID: 20806897]
  32. Nat Photonics. 2023 Oct;17(10):846-855 [PMID: 38162388]
  33. J Phys Chem B. 2004 May 20;108(20):6450-7 [PMID: 18950134]
  34. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15315-20 [PMID: 9860966]
  35. J Phys Chem B. 2012 May 17;116(19):5604-11 [PMID: 22530969]
  36. Annu Rev Phys Chem. 2018 Apr 20;69:253-271 [PMID: 29677466]
  37. J Phys Chem Lett. 2023 Jun 29;14(25):5805-5811 [PMID: 37338128]
  38. J Chem Phys. 2012 Apr 14;136(14):144503 [PMID: 22502529]
  39. Phys Chem Chem Phys. 2009 Oct 1;11(37):8119-32 [PMID: 19756266]
  40. Biophys J. 2014 Feb 4;106(3):639-48 [PMID: 24507604]
  41. J Chem Phys. 2004 Apr 22;120(16):7400-9 [PMID: 15267650]
  42. J Phys Chem Lett. 2023 Nov 9;14(44):10067-10073 [PMID: 37916651]
  43. J Chem Phys. 2010 Aug 7;133(5):054505 [PMID: 20707540]
  44. J Am Chem Soc. 2017 Feb 15;139(6):2369-2378 [PMID: 28103437]
  45. Phys Rev Lett. 2006 Mar 24;96(11):115504 [PMID: 16605840]
  46. Nat Chem. 2022 Aug;14(8):891-897 [PMID: 35513508]
  47. Phys Rev Lett. 1996 Oct 28;77(18):3839-3842 [PMID: 10062321]
  48. J Phys Chem B. 2012 Mar 29;116(12):3754-9 [PMID: 22376278]
  49. J Chem Phys. 2023 Nov 21;159(19): [PMID: 37966136]
  50. Phys Chem Chem Phys. 2022 Jun 8;24(22):13831-13838 [PMID: 35616604]
  51. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  52. J Phys Chem A. 2024 Apr 18;128(15):2912-2922 [PMID: 38572812]
  53. Phys Rev Lett. 1995 Aug 21;75(8):1514-1517 [PMID: 10060317]
  54. J Chem Theory Comput. 2013 Feb 12;9(2):951-4 [PMID: 26588738]
  55. Angew Chem Int Ed Engl. 2009;48(33):6141-3 [PMID: 19565585]
  56. Chem Commun (Camb). 2020 Jan 16;56(5):715-718 [PMID: 31848530]
  57. J Cheminform. 2012 Aug 13;4(1):17 [PMID: 22889332]
  58. Nat Chem. 2023 Dec;15(12):1715-1721 [PMID: 37563323]
  59. Sci Adv. 2021 May 14;7(20): [PMID: 33990332]
  60. J Phys Chem A. 2018 Jan 18;122(2):554-562 [PMID: 29251500]
  61. Biosensors (Basel). 2022 Mar 25;12(4): [PMID: 35448255]
  62. Acc Chem Res. 2015 Apr 21;48(4):998-1006 [PMID: 25799082]
  63. J Phys Chem B. 2012 Sep 6;116(35):10470-6 [PMID: 22448878]
  64. Elife. 2019 Sep 23;8: [PMID: 31545164]
  65. J Chem Phys. 2022 May 7;156(17):174202 [PMID: 35525668]
  66. Phys Chem Chem Phys. 2016 Jul 21;18(27):18094-111 [PMID: 27326899]
  67. J Am Chem Soc. 2024 Jan 24;146(3):1874-1886 [PMID: 38085547]
  68. J Phys Chem Lett. 2024 Jan 11;15(1):187-200 [PMID: 38156972]

Grants

  1. DP2 GM140919/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0vibrationalfieldselectriclifetimesmeasurementsnitrileenergynewOpticalwide-rangingapplicationschemistrybiologyPreviouslyfocusedshiftsintensityfrequencyshowcanreportlocalultrasensitivepicosecondmid-infrared-near-infrareddouble-resonancefluorescencespectro-microscopyRhodamine800Usingrobustconvolutionfittingapproachobservestronglylinearlycorrelated=0841solventreactionSupporteddensityfunctionaltheoryrationalizetrenddoorwaymodelintramolecularredistributionworkprovidesfundamentalinsightsnatureflowlargepolyatomicmolecularsystemsestablishestheoreticalbasisfieldsensingofferingexperimentaldimensionprobingintracellularelectrostaticsNitrileVibrationalLifetimesProbesLocalElectricFields

Similar Articles

Cited By (2)