High-performance grating-like SERS substrate based on machine learning for ultrasensitive detection of Zexie-Baizhu decoction.

Wenying Zhou, Xue Han, Yanjun Wu, Guochao Shi, Shiqi Xu, Mingli Wang, Wenzhi Yuan, Jiahao Cui, Zelong Li
Author Information
  1. Wenying Zhou: Hebei International Research Center for Medical-Engineering, Chengde Medical University, Chengde, 067000, Hebei, China.
  2. Xue Han: Department of Neurology, Affiliated Hospital of Chengde Medical University, Chengde, 067000, Hebei, China.
  3. Yanjun Wu: Hebei International Research Center for Medical-Engineering, Chengde Medical University, Chengde, 067000, Hebei, China.
  4. Guochao Shi: Hebei International Research Center for Medical-Engineering, Chengde Medical University, Chengde, 067000, Hebei, China.
  5. Shiqi Xu: Hebei International Research Center for Medical-Engineering, Chengde Medical University, Chengde, 067000, Hebei, China.
  6. Mingli Wang: State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China.
  7. Wenzhi Yuan: Hebei International Research Center for Medical-Engineering, Chengde Medical University, Chengde, 067000, Hebei, China.
  8. Jiahao Cui: Hebei International Research Center for Medical-Engineering, Chengde Medical University, Chengde, 067000, Hebei, China.
  9. Zelong Li: Hebei International Research Center for Medical-Engineering, Chengde Medical University, Chengde, 067000, Hebei, China.

Abstract

Rapid, universal and accurate identification of chemical composition changes in multi-component traditional Chinese medicine (TCM) decoction is a necessary condition for elucidating the effectiveness and mechanism of pharmacodynamic substances in TCM. In this paper, SERS technology, combined with grating-like SERS substrate and machine learning method, was used to establish an efficient and sensitive method for the detection of TCM decoction. Firstly, the grating-like substrate prepared by magnetron sputtering technology was served as a reliable SERS sensor for the identification of TCM decoction. The enhancement factor (EF) of 4-ATP probe molecules was as high as 1.90 × 10 and the limit of detection (LOD) was as low as 1 × 10 M. Then, SERS technology combined with support vector machine (SVM), decision tree (DT), Naive Bayes (NB) and other machine learning algorithms were used to classify and identify the three TCM decoctions, and the classification accuracy rate was as high as 97.78 %. In summary, it is expected that the proposed method combining SERS and machine learning method will have a high development in the practical application of multi-component analytes in TCM.

Keywords

References

  1. Front Pharmacol. 2022 Jun 20;13:858795 [PMID: 35795562]
  2. Nanomaterials (Basel). 2022 Aug 10;12(16): [PMID: 36014606]
  3. Mol Cell Biochem. 2021 Feb;476(2):809-818 [PMID: 33078341]
  4. Molecules. 2018 Feb 26;23(3): [PMID: 29495375]
  5. J Sep Sci. 2020 Feb;43(4):736-747 [PMID: 31758848]
  6. Nanoscale Res Lett. 2013 May 22;8(1):248 [PMID: 23692676]
  7. Nanomaterials (Basel). 2022 Jun 10;12(12): [PMID: 35745341]
  8. Anal Bioanal Chem. 2023 Sep;415(22):5379-5389 [PMID: 37392214]
  9. Dig Dis. 2012;30(2):158-62 [PMID: 22722431]
  10. Chem Rev. 2019 Jan 9;119(1):664-699 [PMID: 30346757]
  11. ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3432-7 [PMID: 22708788]
  12. RSC Adv. 2019 Jan 15;9(4):1859-1868 [PMID: 35516124]
  13. Comput Biol Med. 2023 Jan;152:106435 [PMID: 36535207]
  14. J Colloid Interface Sci. 2022 Feb 15;608(Pt 2):2111-2119 [PMID: 34752981]
  15. ACS Appl Mater Interfaces. 2014 May 14;6(9):6281-9 [PMID: 24359537]
  16. Mater Horiz. 2021 Feb 1;8(2):370-382 [PMID: 34821260]
  17. Adv Mater. 2020 May;32(19):e1907160 [PMID: 32201997]
  18. J Pharm Biomed Anal. 2007 Feb 19;43(3):1000-6 [PMID: 17156960]
  19. Surgery. 2023 Sep;174(3):723-726 [PMID: 37419761]
  20. Analyst. 2021 Jan 21;146(2):674-682 [PMID: 33210104]
  21. J Chromatogr A. 2021 Feb 8;1638:461890 [PMID: 33465584]
  22. Chem Rev. 2018 May 23;118(10):4946-4980 [PMID: 29638112]
  23. Talanta. 2022 Feb 1;238(Pt 1):122988 [PMID: 34857322]
  24. Phytochem Anal. 2010 May-Jun;21(3):253-60 [PMID: 20151400]
  25. Bioorg Chem. 2019 Nov;92:103226 [PMID: 31491566]
  26. Bioorg Med Chem Lett. 2009 Apr 15;19(8):2148-53 [PMID: 19289281]
  27. Front Microbiol. 2021 Aug 31;12:696921 [PMID: 34531835]
  28. Anal Bioanal Chem. 2020 Oct;412(26):7073-7083 [PMID: 32808053]
  29. Anal Chim Acta. 2020 Feb 8;1097:1-29 [PMID: 31910948]
  30. Spectrochim Acta A Mol Biomol Spectrosc. 2008 Mar;69(3):733-7 [PMID: 17588805]
  31. Molecules. 2023 Aug 09;28(16): [PMID: 37630228]
  32. Biochem Pharmacol. 2020 Jul;177:114007 [PMID: 32360309]
  33. Compr Rev Food Sci Food Saf. 2014 May;13(3):317-328 [PMID: 33412656]

Word Cloud

Created with Highcharts 10.0.0SERSTCMdecoctionmachinelearningmethodtechnologygrating-likesubstratedetectionhighidentificationmulti-componentChinesemedicinecombinedusedZexie-BaizhuRapiduniversalaccuratechemicalcompositionchangestraditionalnecessaryconditionelucidatingeffectivenessmechanismpharmacodynamicsubstancespaperestablishefficientsensitiveFirstlypreparedmagnetronsputteringservedreliablesensorenhancementfactorEF4-ATPprobemolecules190 × 10limitLODlow1 × 10 MsupportvectorSVMdecisiontreeDTNaiveBayesNBalgorithmsclassifyidentifythreedecoctionsclassificationaccuracyrate9778 %summaryexpectedproposedcombiningwilldevelopmentpracticalapplicationanalytesHigh-performancebasedultrasensitiveGrating-likestructureMachineTraditional

Similar Articles

Cited By