Application of Deep Learning for Studying NMDA Receptors.

Zhenfeng Deng, Ruichu Gu, Han Wen
Author Information
  1. Zhenfeng Deng: DP Technology, Beijing, China.
  2. Ruichu Gu: DP Technology, Beijing, China.
  3. Han Wen: Department of Physics, University at Buffalo, Buffalo, NY, USA. hanwen@buffalo.edu.

Abstract

Artificial intelligence underwent remarkable advancement in the past decade, revolutionizing our way of thinking and unlocking unprecedented opportunities across various fields, including drug development. The emergence of large pretrained models, such as ChatGPT, has even begun to demonstrate human-level performance in certain tasks.However, the difficulties of deploying and utilizing AI and pretrained model for nonexpert limited its practical use. To overcome this challenge, here we presented three highly accessible online tools based on a large pretrained model for chemistry, the Uni-Mol, for drug development against CNS diseases, including those targeting NMDA receptor: the blood-brain barrier (BBB) permeability prediction, the quantitative structure-activity relationship (QSAR) analysis system, and a versatile interface of the AI-based molecule generation model named VD-gen. We believe that these resources will effectively bridge the gap between cutting-edge AI technology and NMDAR experts, facilitating rapid and rational drug development.

Keywords

References

  1. Kadry H, Noorani B, Cucullo L (2020) A blood���brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17(1):69. https://doi.org/10.1186/s12987-020-00230-3 [DOI: 10.1186/s12987-020-00230-3]
  2. Shaker B, Yu M-S, Song JS, Ahn S, Ryu JY, Oh K-S, Na D (2020) LightBBB: computational prediction model of blood���brain-barrier penetration based on LightGBM. Bioinformatics 37(8):1135���1139. https://doi.org/10.1093/bioinformatics/btaa918 [DOI: 10.1093/bioinformatics/btaa918]
  3. Singh M, Divakaran R, Konda LSK, Kristam R (2020) A classification model for blood brain barrier penetration. J Mol Graph Model 96:107516. https://doi.org/10.1016/j.jmgm.2019.107516 [DOI: 10.1016/j.jmgm.2019.107516]
  4. Liu L, Zhang L, Feng H, Li S, Liu M, Zhao J, Liu H (2021) Prediction of the blood���brain barrier (BBB) permeability of chemicals based on machine-learning and ensemble methods. Chem Res Toxicol 34(6):1456���1467. https://doi.org/10.1021/acs.chemrestox.0c00343 [DOI: 10.1021/acs.chemrestox.0c00343]
  5. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz���min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977���5010. https://doi.org/10.1021/jm4004285 [DOI: 10.1021/jm4004285]
  6. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29(6���7):476���488. https://doi.org/10.1002/minf.201000061 [DOI: 10.1002/minf.201000061]
  7. Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694���2718. https://doi.org/10.3762/bjoc.12.267 [DOI: 10.3762/bjoc.12.267]
  8. Bilodeau C, Jin W, Jaakkola T, Barzilay R, Jensen KF (2022) Generative models for molecular discovery: recent advances and challenges. Wiley Interdiscip Rev: Comput Mol Sci 12(5):e1608. https://doi.org/10.1002/wcms.1608 [DOI: 10.1002/wcms.1608]
  9. Zhang D, Bi H, Dai F-Z, Jiang W, Zhang L, Wang H (2022) DPA-1: pretraining of attention-based deep potential model for molecular simulation. arXiv preprint arXiv:220808236
  10. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, Smetanin N, Verkuil R, Kabeli O, Shmueli Y, dos Santos Costa A, Fazel-Zarandi M, Sercu T, Candido S, Rives A (2023) Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637):1123���1130. https://doi.org/10.1126/science.ade2574 [DOI: 10.1126/science.ade2574]
  11. Zhou G, Gao Z, Ding Q, Zheng H, Xu H, Wei Z, Zhang L, Guolin Ke G (2023) Uni-Mol: a universal 3D molecular representation learning framework. Published as a conference paper at the Eleventh International Conference on Learning Representations (ICLR). https://openreview.net/pdf?id=6K2RM6wVqKu
  12. Lu S, Yao L, Chen X, Zheng H, He D, Ke G (2023) 3D molecular generation via virtual dynamics. arXiv preprint arXiv:230205847
  13. Wu Z, Ramsundar B, Feinberg Evan N, Gomes J, Geniesse C, Pappu AS, Leswing K, Pande V (2018) MoleculeNet: a benchmark for molecular machine learning. Chem Sci 9(2):513���530. https://doi.org/10.1039/C7SC02664A [DOI: 10.1039/C7SC02664A]
  14. Bacilieri M, Varano F, Deflorian F, Marini M, Catarzi D, Colotta V, Filacchioni G, Galli A, Costagli C, Kaseda C, Moro S (2007) Tandem 3D-QSARs approach as a valuable tool to predict binding affinity data: design of new Gly/NMDA receptor antagonists as a key study. J Chem Inf Model 47(5):1913���1922. https://doi.org/10.1021/ci7001846 [DOI: 10.1021/ci7001846]
  15. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455���461. https://doi.org/10.1002/jcc.21334 [DOI: 10.1002/jcc.21334]

MeSH Term

Receptors, N-Methyl-D-Aspartate
Deep Learning
Humans
Quantitative Structure-Activity Relationship
Blood-Brain Barrier
Drug Development

Chemicals

Receptors, N-Methyl-D-Aspartate

Word Cloud

Created with Highcharts 10.0.0developmentmodeldrugpretrainedincludinglargeAINMDAbarrierQSARVD-genDeepArtificialintelligenceunderwentremarkableadvancementpastdecaderevolutionizingwaythinkingunlockingunprecedentedopportunitiesacrossvariousfieldsemergencemodelsChatGPTevenbegundemonstratehuman-levelperformancecertaintasksHoweverdifficultiesdeployingutilizingnonexpertlimitedpracticaluseovercomechallengepresentedthreehighlyaccessibleonlinetoolsbasedchemistryUni-MolCNSdiseasestargetingreceptor:blood-brainBBBpermeabilitypredictionquantitativestructure-activityrelationshipanalysissystemversatileinterfaceAI-basedmoleculegenerationnamedbelieveresourceswilleffectivelybridgegapcutting-edgetechnologyNMDARexpertsfacilitatingrapidrationalApplicationLearningStudyingReceptorsBlood���brainlearningDrugPretrainedQuantitativestructure���activityrelationships

Similar Articles

Cited By

No available data.