Advanced Triboelectric Applications of Biomass-Derived Materials: A Comprehensive Review.

Chan Ho Park, Minsoo P Kim
Author Information
  1. Chan Ho Park: Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea. ORCID
  2. Minsoo P Kim: Department of Chemical Engineering, Sunchon National University, Suncheon 57922, Republic of Korea. ORCID

Abstract

The utilization of triboelectric materials has gained considerable attention in recent years, offering a sustainable approach to energy harvesting and sensing technologies. Biomass-derived materials, owing to their abundance, renewability, and biocompatibility, offer promising avenues for enhancing the performance and versatility of triboelectric devices. This paper explores the synthesis and characterization of biomass-derived materials, their integration into triboelectric nanogenerators (TENGs), and their applications in energy harvesting, self-powered sensors, and environmental monitoring. This review presents an overview of the emerging field of advanced triboelectric applications that utilize the unique properties of biomass-derived materials. Additionally, it addresses the challenges and opportunities in employing biomass-derived materials for triboelectric applications, emphasizing the potential for sustainable and eco-friendly energy solutions.

Keywords

References

  1. Adv Mater. 2014 Aug 6;26(29):5037-42 [PMID: 24848446]
  2. ACS Appl Mater Interfaces. 2016 Jan 13;8(1):736-44 [PMID: 26654103]
  3. Adv Sci (Weinh). 2023 May;10(15):e2206243 [PMID: 36967572]
  4. Sci Rep. 2023 Jun 22;13(1):10160 [PMID: 37349344]
  5. ACS Nano. 2021 Jan 26;15(1):258-287 [PMID: 33427457]
  6. Nanomicro Lett. 2022 Dec 7;15(1):8 [PMID: 36477664]
  7. Int J Biol Macromol. 2020 Nov 15;163:2097-2112 [PMID: 32949625]
  8. Bioresour Technol. 2019 Jan;271:462-472 [PMID: 30270050]
  9. Small. 2024 Apr;20(16):e2308469 [PMID: 38032176]
  10. ChemSusChem. 2020 Jun 8;13(11):2807-2827 [PMID: 32180357]
  11. Nat Commun. 2021 May 11;12(1):2634 [PMID: 33976129]
  12. Materials (Basel). 2022 Dec 20;16(1): [PMID: 36614353]
  13. ACS Nano. 2014 Jun 24;8(6):6273-80 [PMID: 24766072]
  14. Polymers (Basel). 2022 Dec 31;15(1): [PMID: 36616572]
  15. Adv Sci (Weinh). 2021 Feb 18;8(7):2004213 [PMID: 33854901]
  16. Adv Mater. 2018 Mar;30(11): [PMID: 29349877]
  17. Bioact Mater. 2020 Apr 16;5(3):496-509 [PMID: 32322760]
  18. Nat Commun. 2019 Mar 29;10(1):1427 [PMID: 30926850]
  19. Carbohydr Polym. 2021 Aug 15;266:118120 [PMID: 34044936]
  20. Nanomicro Lett. 2023 May 11;15(1):124 [PMID: 37166487]
  21. J Mater Chem B. 2013 Jul 14;1(26):3304-3313 [PMID: 32261039]
  22. Carbohydr Polym. 2022 Sep 1;291:119586 [PMID: 35698402]
  23. RSC Adv. 2020 May 6;10(30):17752-17759 [PMID: 35515611]
  24. Mater Horiz. 2021 Nov 1;8(11):3149-3162 [PMID: 34610636]
  25. Materials (Basel). 2019 Aug 04;12(15): [PMID: 31382665]
  26. Sci Adv. 2017 May 26;3(5):e1602902 [PMID: 28560339]
  27. Sci Rep. 2019 Oct 15;9(1):14810 [PMID: 31616010]
  28. Nanoscale Res Lett. 2021 Feb 12;16(1):35 [PMID: 33580327]
  29. Polymers (Basel). 2022 Oct 12;14(20): [PMID: 36297848]
  30. ACS Appl Mater Interfaces. 2021 Nov 10;13(44):52333-52345 [PMID: 34723459]
  31. ACS Omega. 2023 Sep 14;8(38):34310-34327 [PMID: 37779984]
  32. Materials (Basel). 2023 Mar 03;16(5): [PMID: 36903188]
  33. ACS Nano. 2019 Nov 26;13(11):12345-12356 [PMID: 31503449]
  34. Food Chem X. 2023 Dec 27;21:101095 [PMID: 38268840]
  35. Polymers (Basel). 2022 Dec 31;15(1): [PMID: 36616571]
  36. Nat Commun. 2017 Jul 20;8(1):88 [PMID: 28729530]
  37. Int J Mol Sci. 2023 Oct 30;24(21): [PMID: 37958768]
  38. ACS Appl Bio Mater. 2022 Dec 19;5(12):5706-5715 [PMID: 36473275]
  39. Nanomicro Lett. 2022 Apr 28;14(1):115 [PMID: 35482231]
  40. J Control Release. 2003 Nov 18;93(1):1-13 [PMID: 14602417]
  41. Adv Healthc Mater. 2023 Jun;12(16):e2202042 [PMID: 36377336]
  42. Polymers (Basel). 2022 Sep 07;14(18): [PMID: 36145882]
  43. Nanotechnology. 2017 Feb 3;28(5):054005 [PMID: 28029106]
  44. Biosensors (Basel). 2023 Jun 01;13(6): [PMID: 37366969]
  45. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):839-42 [PMID: 1736301]
  46. Sci Technol Adv Mater. 2020 Dec 14;21(1):787-804 [PMID: 33354165]
  47. Faraday Discuss. 2014;176:447-58 [PMID: 25406406]
  48. ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5133-5141 [PMID: 33471495]
  49. Int J Biol Macromol. 2023 Sep 1;248:125900 [PMID: 37481191]
  50. Macromol Rapid Commun. 2023 May;44(10):e2200977 [PMID: 37002780]
  51. Materials (Basel). 2021 Mar 30;14(7): [PMID: 33808195]
  52. Int J Biol Macromol. 2018 Dec;120(Pt A):263-273 [PMID: 30130612]
  53. Nanomicro Lett. 2020 Aug 18;12(1):169 [PMID: 34138168]
  54. ACS Appl Mater Interfaces. 2020 Apr 8;12(14):16442-16450 [PMID: 32172560]

Grants

  1. NRF-2023K2A9A1A01098512, FY2023/the government of the Republic of Korea(MSIT) and the National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0triboelectricmaterialsenergybiomass-derivedapplicationssustainableharvestingutilizationgainedconsiderableattentionrecentyearsofferingapproachsensingtechnologiesBiomass-derivedowingabundancerenewabilitybiocompatibilityofferpromisingavenuesenhancingperformanceversatilitydevicespaperexploressynthesischaracterizationintegrationnanogeneratorsTENGsself-poweredsensorsenvironmentalmonitoringreviewpresentsoverviewemergingfieldadvancedutilizeuniquepropertiesAdditionallyaddresseschallengesopportunitiesemployingemphasizingpotentialeco-friendlysolutionsAdvancedTriboelectricApplicationsBiomass-DerivedMaterials:ComprehensiveReviewbiodegradablebiomassflexibledevice

Similar Articles

Cited By