Potential Inhibitors of Lumpy Skin Disease's Viral Protein (DNA Polymerase): A Combination of Bioinformatics Approaches.

Sabbir Zia, Md-Mehedi Sumon, Md-Ashiqur Ashik, Abul Basar, Sangjin Lim, Yeonsu Oh, Yungchul Park, Md-Mafizur Rahman
Author Information
  1. Sabbir Zia: Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh. ORCID
  2. Md-Mehedi Sumon: Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh. ORCID
  3. Md-Ashiqur Ashik: Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh.
  4. Abul Basar: Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh. ORCID
  5. Sangjin Lim: College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. ORCID
  6. Yeonsu Oh: College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea. ORCID
  7. Yungchul Park: College of Forest & Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
  8. Md-Mafizur Rahman: Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh. ORCID

Abstract

Lumpy skin disease (LSD), caused by a virus within the family and genus, induces nodular skin lesions in cattle. This spreads through direct contact and insect vectors, significantly affecting global cattle farming. Despite the availability of vaccines, their efficacy is limited by poor prophylaxis and adverse effects. Our study aimed to identify the potential inhibitors targeting the LSDV-encoded DNA polymerase protein (gene LSDV039) for further investigation through comprehensive analysis and computational methods. Virtual screening revealed rhein and taxifolin as being potent binders among 380 phytocompounds, with respective affinities of -8.97 and -7.20 kcal/mol. canagliflozin and tepotinib exhibited strong affinities (-9.86 and -8.86 kcal/mol) among 718 FDA-approved antiviral drugs. Simulating the molecular dynamics of canagliflozin, tepotinib, rhein, and taxifolin highlighted taxifolin's superior stability and binding energy. rhein displayed compactness in RMSD and RMSF, but fluctuated in Rg and SASA, while canagliflozin demonstrated stability compared to tepotinib. This study highlights the promising potential of using repurposed drugs and phytocompounds as potential LSD therapeutics. However, extensive validation through in vitro and in vivo testing and clinical trials is crucial for their practical application.

Keywords

References

  1. Molecules. 2015 Jul 22;20(7):13384-421 [PMID: 26205061]
  2. Drugs. 2017 Sep;77(14):1577-1592 [PMID: 28836175]
  3. Prog Clin Biol Res. 1989;289:433-44 [PMID: 2726808]
  4. Viruses. 2021 May 04;13(5): [PMID: 34064347]
  5. J Clin Med. 2020 Nov 23;9(11): [PMID: 33238464]
  6. Ticks Tick Borne Dis. 2015 Mar;6(2):134-40 [PMID: 25468765]
  7. Sci Rep. 2022 May 13;12(1):7975 [PMID: 35562538]
  8. Vet Med Sci. 2021 Sep;7(5):1616-1624 [PMID: 33993641]
  9. Microb Pathog. 2022 Jul;168:105608 [PMID: 35654381]
  10. BMC Vet Res. 2021 Jan 29;17(1):61 [PMID: 33514360]
  11. Environ Res. 2023 Jun 15;227:115725 [PMID: 37001848]
  12. J Tradit Complement Med. 2023 May 8;: [PMID: 37360910]
  13. Microorganisms. 2020 Mar 13;8(3): [PMID: 32183205]
  14. Viruses. 2023 Aug 31;15(9): [PMID: 37766268]
  15. Vaccines (Basel). 2020 Dec 23;9(1): [PMID: 33374808]
  16. Trends Biochem Sci. 2019 Nov;44(11):902-913 [PMID: 31301982]
  17. Vet Microbiol. 2020 Jun;245:108689 [PMID: 32456824]
  18. Nucleic Acids Res. 2023 Jan 6;51(D1):D1373-D1380 [PMID: 36305812]
  19. Nucleic Acids Res. 2009 Jan;37(Database issue):D211-5 [PMID: 18940856]
  20. Appl Microbiol Biotechnol. 2005 Mar;66(6):612-21 [PMID: 15592828]
  21. Pharmacol Res. 2022 Jan;175:106037 [PMID: 34921994]
  22. Prev Vet Med. 2020 Aug;181:104595 [PMID: 30553537]
  23. Front Microbiol. 2022 Nov 28;13:1065894 [PMID: 36519172]
  24. Molecules. 2022 Oct 29;27(21): [PMID: 36364196]
  25. N Engl J Med. 2020 Sep 3;383(10):931-943 [PMID: 32469185]
  26. Virus Res. 2022 Mar;310:198671 [PMID: 34986368]
  27. BMC Chem. 2019 Jul 11;13(1):90 [PMID: 31384837]
  28. J Genet Eng Biotechnol. 2022 May 24;20(1):78 [PMID: 35608704]
  29. Indian J Microbiol. 2024 Sep;64(3):1057-1074 [PMID: 39282169]
  30. J Wildl Dis. 2021 Jul 1;57(3):708-711 [PMID: 33961035]
  31. Bioinformation. 2018 Dec 27;14(9):574-579 [PMID: 31223216]
  32. Front Mol Biosci. 2023 Jan 10;9:1066029 [PMID: 36703920]
  33. Infect Disord Drug Targets. 2024;24(5):e150124225632 [PMID: 38231058]
  34. Transbound Emerg Dis. 2022 Nov;69(6):3405-3418 [PMID: 36056232]
  35. Proteins. 2011 Oct;79(10):2794-812 [PMID: 21905107]
  36. Brief Bioinform. 2021 Mar 22;22(2):1790-1818 [PMID: 32187356]
  37. Curr Opin Chem Biol. 2006 Jun;10(3):194-202 [PMID: 16675286]
  38. Comput Biol Chem. 2021 Feb;90:107414 [PMID: 33191109]
  39. Comput Biol Med. 2021 Jun;133:104359 [PMID: 33845270]
  40. Int J Mol Sci. 2013 Aug 15;14(8):16836-50 [PMID: 23955267]
  41. Science. 1996 Jan 12;271(5246):163-8 [PMID: 8539615]
  42. Drug Discov Today Technol. 2012 Autumn;9(3):e219-25 [PMID: 24990575]
  43. Animals (Basel). 2023 Jul 12;13(14): [PMID: 37508058]
  44. Int J Biol Macromol. 2023 Feb 28;229:515-528 [PMID: 36584781]
  45. Arch Virol. 2003 Jul;148(7):1335-56 [PMID: 12827464]
  46. Expert Opin Drug Discov. 2015 May;10(5):449-61 [PMID: 25835573]
  47. Vaccines (Basel). 2021 May 08;9(5): [PMID: 34066658]
  48. Protein Sci. 2021 Jan;30(1):70-82 [PMID: 32881101]
  49. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D668-72 [PMID: 16381955]
  50. Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30 [PMID: 24288371]
  51. Chem Biol. 2002 Nov;9(11):1209-17 [PMID: 12445771]
  52. Virus Res. 2019 Aug;269:197637 [PMID: 31152757]
  53. Trop Med Infect Dis. 2023 Sep 26;8(10): [PMID: 37888585]
  54. PeerJ. 2021 Jun 4;9:e11570 [PMID: 34141495]
  55. J Chem Theory Comput. 2010 May 11;6(5):1509-19 [PMID: 26615687]
  56. ACS Bio Med Chem Au. 2022 Dec 15;3(1):32-45 [PMID: 37101607]
  57. BMC Pharmacol Toxicol. 2021 Nov 2;22(1):68 [PMID: 34727985]
  58. Vaccine. 2015 Jun 22;33(28):3256-61 [PMID: 26056063]
  59. Int J Biol Macromol. 2023 Jun 30;241:124656 [PMID: 37119913]
  60. Nat Struct Mol Biol. 2021 Sep;28(9):704-705 [PMID: 34376855]
  61. CRC Crit Rev Plant Sci. 2007 Mar;26(2):105-122 [PMID: 18496613]
  62. Antiviral Res. 2014 Sep;109:1-6 [PMID: 24973760]
  63. J Cheminform. 2011 Oct 07;3:33 [PMID: 21982300]
  64. J Mol Graph Model. 2024 Jan;126:108666 [PMID: 37976980]
  65. J Virol. 2001 Aug;75(15):7122-30 [PMID: 11435593]
  66. Front Mol Biosci. 2021 Jul 05;8:637122 [PMID: 34291081]
  67. EBioMedicine. 2022 Aug;82:104177 [PMID: 35843171]
  68. Vet Microbiol. 2021 May;256:109046 [PMID: 33780805]
  69. Clin Diabetes. 2017 Jul;35(3):141-153 [PMID: 28761216]
  70. Int J Immunopathol Pharmacol. 2021 Jan-Dec;35:20587384211002621 [PMID: 33726557]
  71. J Virol. 2021 Apr 12;95(9): [PMID: 33568514]
  72. Virulence. 2023 Dec;14(1):2190647 [PMID: 36919498]
  73. Vaccines (Basel). 2021 Oct 06;9(10): [PMID: 34696244]
  74. Life (Basel). 2021 Jan 21;11(2): [PMID: 33494233]
  75. Viruses. 2023 Feb 22;15(3): [PMID: 36992313]
  76. Trends Microbiol. 2018 Oct;26(10):865-876 [PMID: 29759926]
  77. Vet Res Commun. 2023 Jun;47(2):767-777 [PMID: 36460903]
  78. Front Microbiol. 2023 Nov 02;14:1266759 [PMID: 38029115]
  79. J Biomol Struct Dyn. 2024 Mar 26;:1-11 [PMID: 38529847]
  80. Vet Res. 2024 Mar 16;55(1):33 [PMID: 38493160]
  81. Naunyn Schmiedebergs Arch Pharmacol. 2023 Oct;396(10):2311-2329 [PMID: 37160482]
  82. Transbound Emerg Dis. 2022 Sep;69(5):e3268-e3272 [PMID: 35502589]

Grants

  1. PJ010859012016/Cooperative Research Program for Agricultural Science & Technology Development

Word Cloud

Created with Highcharts 10.0.0potentialskinDNAtepotinibLumpydiseaseLSDcattlestudyinhibitorspolymeraserheintaxifolinamongphytocompoundsaffinities-8kcal/mol86drugsmolecularcanagliflozinstabilitycausedviruswithinfamilygenusinducesnodularlesionsspreadsdirectcontactinsectvectorssignificantlyaffectingglobalfarmingDespiteavailabilityvaccinesefficacylimitedpoorprophylaxisadverseeffectsaimedidentifytargetingLSDV-encodedproteingeneLSDV039investigationcomprehensiveanalysiscomputationalmethodsVirtualscreeningrevealedpotentbinders380respective97-720Canagliflozinexhibitedstrong-9718FDA-approvedantiviralSimulatingdynamicshighlightedtaxifolin'ssuperiorbindingenergyRheindisplayedcompactnessRMSDRMSFfluctuatedRgSASAdemonstratedcomparedhighlightspromisingusingrepurposedtherapeuticsHoweverextensivevalidationvitrovivotestingclinicaltrialscrucialpracticalapplicationPotentialInhibitorsSkinDisease'sViralProteinPolymerase:CombinationBioinformaticsApproachesantiviral-drugcompoundslumpydocking

Similar Articles

Cited By (2)