A semiparametric multiply robust multiple imputation method for causal inference.

Benjamin Gochanour, Sixia Chen, Laura Beebe, David Haziza
Author Information
  1. Benjamin Gochanour: Mayo Clinic, Rochester, Minnesota 55905, U.S.A.
  2. Sixia Chen: Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901, U.S.A.
  3. Laura Beebe: Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901, U.S.A.
  4. David Haziza: Department of Mathematics and Statistics, University of Ottawa, Ontario, Ottawa, ON, K1N 6N5, Canada.

Abstract

Evaluating the impact of non-randomized treatment on various health outcomes is difficult in observational studies because of the presence of covariates that may affect both the treatment or exposure received and the outcome of interest. In the present study, we develop a semiparametric multiply robust multiple imputation method for estimating average treatment effects in such studies. Our method combines information from multiple propensity score models and outcome regression models, and is multiply robust in that it produces consistent estimators for the average causal effects if at least one of the models is correctly specified. Our proposed estimators show promising performances even with incorrect models. Compared with existing fully parametric approaches, our proposed method is more robust against model misspecifications. Compared with fully non-parametric approaches, our proposed method does not have the problem of curse of dimensionality and achieves dimension reduction by combining information from multiple models. In addition, it is less sensitive to the extreme propensity score estimates compared with inverse propensity score weighted estimators and augmented estimators. The asymptotic properties of our method are developed and the simulation study shows the advantages of our proposed method compared with some existing methods in terms of balancing efficiency, bias, and coverage probability. Rubin's variance estimation formula can be used for estimating the variance of our proposed estimators. Finally, we apply our method to 2009-2010 National Health Nutrition and Examination Survey (NHANES) to examine the effect of exposure to perfluoroalkyl acids (PFAs) on kidney function.

Keywords

References

  1. Environ Health Perspect. 2013 May;121(5):625-30 [PMID: 23482063]
  2. CA Cancer J Clin. 2002 Mar-Apr;52(2):92-119 [PMID: 11929008]
  3. Nat Rev Cancer. 2004 Aug;4(8):579-91 [PMID: 15286738]
  4. J Natl Cancer Inst. 1998 Mar 4;90(5):389-94 [PMID: 9498489]
  5. Int J Clin Pract. 2009 May;63(5):691-7 [PMID: 19392919]
  6. Health Psychol. 1996 Nov;15(6):448-54 [PMID: 8973925]
  7. Comput Struct Biotechnol J. 2019 Dec 17;18:93-99 [PMID: 31934310]
  8. Ann Intern Med. 2009 May 5;150(9):604-12 [PMID: 19414839]
  9. J Biopharm Stat. 2014;24(3):634-48 [PMID: 24697618]
  10. Stat Sin. 2012;22:149-172 [PMID: 22347786]
  11. Stat Methods Med Res. 1999 Mar;8(1):3-15 [PMID: 10347857]
  12. Biometrika. 2009 Sep;96(3):723-734 [PMID: 20161511]
  13. Nat Rev Nephrol. 2015 Oct;11(10):610-25 [PMID: 26100504]
  14. Stat Sci. 2007;22(4):569-573 [PMID: 18516239]
  15. Eur J Clin Nutr. 1990 Mar;44(3):185-93 [PMID: 2369884]
  16. Eur Heart J. 2011 Mar;32(5):590-7 [PMID: 21224291]
  17. Prev Sci. 2007 Sep;8(3):206-13 [PMID: 17549635]
  18. Am J Epidemiol. 2011 Oct 15;174(8):893-900 [PMID: 21873601]
  19. Stat Med. 1991 Apr;10(4):585-98 [PMID: 2057657]
  20. Am J Med. 2006 Mar;119(3):275.e7-14 [PMID: 16490476]

Grants

  1. R21 MD014658/NIMHD NIH HHS
  2. U54 GM104938/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0methodmodelsestimatorsproposedrobustmultipletreatmentmultiplyimputationpropensityscorestudiesexposureoutcomestudysemiparametricestimatingaverageeffectsinformationcausalComparedexistingfullyapproachescomparedvarianceinferenceMultipleEvaluatingimpactnon-randomizedvarioushealthoutcomesdifficultobservationalpresencecovariatesmayaffectreceivedinterestpresentdevelopcombinesregressionproducesconsistentleastonecorrectlyspecifiedshowpromisingperformancesevenincorrectparametricmodelmisspecificationsnon-parametricproblemcursedimensionalityachievesdimensionreductioncombiningadditionlesssensitiveextremeestimatesinverseweightedaugmentedasymptoticpropertiesdevelopedsimulationshowsadvantagesmethodstermsbalancingefficiencybiascoverageprobabilityRubin'sestimationformulacanusedFinallyapply2009-2010NationalHealthNutritionExaminationSurveyNHANESexamineeffectperfluoroalkylacidsPFAskidneyfunctionBootstrapCausalrobustnessSemiparametricstatistics

Similar Articles

Cited By