Emerging 2D Ferroelectric Devices for In-Sensor and In-Memory Computing.

Chunsheng Chen, Yaoqiang Zhou, Lei Tong, Yue Pang, Jianbin Xu
Author Information
  1. Chunsheng Chen: Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China.
  2. Yaoqiang Zhou: Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China.
  3. Lei Tong: Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China.
  4. Yue Pang: Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China.
  5. Jianbin Xu: Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China. ORCID

Abstract

The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics.

Keywords

References

  1. Nat Nanotechnol. 2022 Jan;17(1):27-32 [PMID: 34750561]
  2. ACS Appl Mater Interfaces. 2020 Oct 7;12(40):44902-44911 [PMID: 32931241]
  3. Adv Mater. 2021 Jul;33(29):e2007081 [PMID: 34105195]
  4. Adv Mater. 2022 Dec;34(48):e2107754 [PMID: 35104378]
  5. Nat Commun. 2021 Mar 19;12(1):1798 [PMID: 33741964]
  6. Small. 2012 Oct 22;8(20):3111-5 [PMID: 22851454]
  7. Nat Nanotechnol. 2023 Jan;18(1):55-63 [PMID: 36509923]
  8. ACS Nano. 2021 Jan 26;15(1):1497-1508 [PMID: 33372769]
  9. Adv Mater. 2016 Apr 20;28(15):2923-30 [PMID: 26894866]
  10. Adv Mater. 2021 May;33(21):e2008709 [PMID: 33860581]
  11. ACS Nano. 2018 May 22;12(5):4976-4983 [PMID: 29694024]
  12. Nat Commun. 2016 May 04;7:11502 [PMID: 27143121]
  13. Sci Adv. 2018 Jul 13;4(7):eaar7720 [PMID: 30027116]
  14. ACS Nano. 2018 Jul 24;12(7):6700-6705 [PMID: 29944829]
  15. Nat Commun. 2015 Jan 22;6:6136 [PMID: 25609217]
  16. Science. 1989 Dec 15;246(4936):1400-5 [PMID: 17755995]
  17. J Phys Chem Lett. 2018 Dec 20;9(24):7160-7164 [PMID: 30540485]
  18. Sci Adv. 2020 Feb 12;6(7):eaay5225 [PMID: 32095529]
  19. ACS Appl Mater Interfaces. 2023 Apr 12;15(14):18505-18515 [PMID: 37000129]
  20. Phys Rev Lett. 2017 Jun 9;118(23):236801 [PMID: 28644638]
  21. Nat Mater. 2007 Jan;6(1):8-9 [PMID: 17199117]
  22. Nat Commun. 2017 Dec 19;8(1):2204 [PMID: 29259188]
  23. Adv Mater. 2021 Feb;33(5):e2004469 [PMID: 33325574]
  24. Nat Nanotechnol. 2019 Aug;14(8):776-782 [PMID: 31308498]
  25. Adv Mater. 2021 Mar;33(12):e2005620 [PMID: 33577112]
  26. Adv Mater. 2022 Jun;34(25):e2103376 [PMID: 34510567]
  27. Nat Commun. 2022 Jan 31;13(1):574 [PMID: 35102192]
  28. Nano Lett. 2017 Sep 13;17(9):5508-5513 [PMID: 28841328]
  29. Nano Lett. 2019 Mar 13;19(3):2044-2050 [PMID: 30698976]
  30. ACS Appl Mater Interfaces. 2020 Jun 3;12(22):24920-24928 [PMID: 32391683]
  31. Nano Lett. 2021 Nov 10;21(21):9318-9324 [PMID: 34677980]
  32. Adv Mater. 2025 Jan;37(2):e2400332 [PMID: 38739927]
  33. Science. 2022 May 27;376(6596):973-978 [PMID: 35617404]
  34. Nature. 2020 Mar;579(7797):62-66 [PMID: 32132692]
  35. Nat Commun. 2020 May 15;11(1):2428 [PMID: 32415121]
  36. ACS Nano. 2022 Sep 27;16(9):13595-13611 [PMID: 36099580]
  37. Phys Rev Lett. 2018 Jun 1;120(22):227601 [PMID: 29906143]
  38. Nat Commun. 2023 Jul 17;14(1):4270 [PMID: 37460531]
  39. Inorg Chem. 2018 Sep 17;57(18):11775-11781 [PMID: 30153016]
  40. Science. 2021 Jun 10;: [PMID: 34112727]
  41. Nat Mater. 2023 Dec;22(12):1499-1506 [PMID: 37770677]
  42. Adv Mater. 2010 Dec 21;22(48):5507-11 [PMID: 21072864]
  43. Nat Commun. 2021 Dec 15;12(1):7291 [PMID: 34911970]
  44. Small. 2024 Jan;20(2):e2304173 [PMID: 37705128]
  45. Adv Mater. 2023 Jan;35(2):e2204949 [PMID: 36366910]
  46. Nano Lett. 2018 Oct 10;18(10):6340-6346 [PMID: 30192558]
  47. Nat Commun. 2021 Jun 29;12(1):4030 [PMID: 34188060]
  48. Adv Mater. 2020 Apr;32(14):e1908040 [PMID: 32080924]
  49. Nat Mater. 2019 Apr;18(4):309-323 [PMID: 30894760]
  50. Nat Commun. 2022 Jun 23;13(1):3587 [PMID: 35739100]
  51. Nano Lett. 2019 Aug 14;19(8):5703-5709 [PMID: 31347854]
  52. Nano Lett. 2022 Aug 10;22(15):6435-6443 [PMID: 35737934]
  53. Nat Commun. 2023 Nov 11;14(1):7304 [PMID: 37951934]
  54. Small. 2019 Feb;15(7):e1805431 [PMID: 30653280]
  55. Nanotechnology. 2021 Jun 29;32(38): [PMID: 34116515]
  56. ACS Nano. 2020 Jun 23;14(6):7628-7638 [PMID: 32492337]
  57. ACS Nano. 2023 Nov 14;17(21):21297-21306 [PMID: 37882177]
  58. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  59. Nat Nanotechnol. 2022 Apr;17(4):367-371 [PMID: 35039684]
  60. Science. 2009 Apr 3;324(5923):63-6 [PMID: 19228998]
  61. Nat Commun. 2019 Apr 16;10(1):1775 [PMID: 30992431]
  62. Adv Mater. 2019 Jul;31(29):e1901300 [PMID: 31148294]
  63. Nature. 2018 Aug;560(7718):336-339 [PMID: 30038286]
  64. Science. 2021 Sep 17;373(6561):1353-1358 [PMID: 34413170]
  65. Nat Commun. 2018 Aug 7;9(1):3143 [PMID: 30087328]
  66. ACS Nano. 2015 Oct 27;9(10):10394-401 [PMID: 26370537]
  67. Nat Commun. 2017 Apr 07;8:14956 [PMID: 28387225]
  68. Sci Adv. 2016 Jun 17;2(6):e1501326 [PMID: 27386556]
  69. Nat Nanotechnol. 2024 Feb;19(2):173-180 [PMID: 38036659]
  70. ACS Nano. 2020 Jan 28;14(1):746-754 [PMID: 31887010]
  71. Nat Commun. 2023 Oct 25;14(1):6778 [PMID: 37880220]
  72. Nat Mater. 2022 Feb;21(2):195-202 [PMID: 34608285]
  73. ACS Nano. 2022 Apr 26;16(4):5418-5426 [PMID: 35234041]
  74. Science. 2016 Jul 15;353(6296):274-8 [PMID: 27418506]
  75. Nat Commun. 2024 Jan 13;15(1):513 [PMID: 38218871]
  76. Phys Rev Lett. 2010 Oct 15;105(16):166602 [PMID: 21230990]
  77. Nat Nanotechnol. 2023 May;18(5):493-500 [PMID: 36941361]
  78. Light Sci Appl. 2016 Aug 26;5(8):e16131 [PMID: 30167181]
  79. Nat Commun. 2021 Feb 17;12(1):1109 [PMID: 33597507]
  80. Science. 2021 May 27;: [PMID: 34045323]
  81. Nat Mater. 2017 Feb;16(2):170-181 [PMID: 27479211]
  82. Nat Commun. 2021 Jan 4;12(1):53 [PMID: 33397907]
  83. Adv Mater. 2019 Aug;31(34):e1803732 [PMID: 30589101]
  84. ACS Nano. 2021 Mar 23;15(3):5689-5695 [PMID: 33651607]
  85. Small. 2019 May;15(22):e1900966 [PMID: 31018039]
  86. Mol Syst Biol. 2016 Jul 29;12(7):878 [PMID: 27474269]
  87. Nat Commun. 2021 Apr 9;12(1):2143 [PMID: 33837210]
  88. Small. 2020 Nov;16(45):e2005217 [PMID: 33035390]
  89. Nat Commun. 2022 Mar 18;13(1):1485 [PMID: 35304489]
  90. Nat Nanotechnol. 2019 Mar;14(3):223-226 [PMID: 30718834]
  91. Nano Lett. 2019 Aug 14;19(8):5109-5117 [PMID: 31248259]
  92. Adv Mater. 2013 Jun 25;25(24):3357-64 [PMID: 23666885]
  93. Nat Commun. 2016 Aug 11;7:12357 [PMID: 27510418]
  94. Nano Lett. 2018 Feb 14;18(2):1253-1258 [PMID: 29378142]
  95. Phys Rev Lett. 2016 Aug 26;117(9):097601 [PMID: 27610884]
  96. Small Methods. 2022 Apr;6(4):e2101583 [PMID: 35212464]
  97. Adv Mater. 2021 Apr;33(13):e2005098 [PMID: 33577141]
  98. Adv Sci (Weinh). 2019 Jun 22;6(16):1900314 [PMID: 31453061]
  99. Nano Lett. 2015 Jun 10;15(6):3808-14 [PMID: 25932503]
  100. Adv Mater. 2023 May;35(20):e2211598 [PMID: 36857506]
  101. Adv Mater. 2018 Dec;30(51):e1803249 [PMID: 30334281]
  102. Mater Horiz. 2021 May 1;8(5):1472-1480 [PMID: 34846455]
  103. Adv Sci (Weinh). 2024 Jan;11(3):e2305679 [PMID: 38029338]
  104. Nat Nanotechnol. 2019 Jul;14(7):668-673 [PMID: 31182837]
  105. Adv Mater. 2023 Sep;35(38):e2302419 [PMID: 37352331]
  106. Phys Rev Lett. 2015 Oct 9;115(15):157401 [PMID: 26550751]
  107. Science. 2014 Aug 8;345(6197):668-73 [PMID: 25104385]
  108. Nat Commun. 2017 Apr 03;8:14736 [PMID: 28368007]
  109. Nature. 2008 May 1;453(7191):80-3 [PMID: 18451858]
  110. Adv Funct Mater. 2018;28: [PMID: 31080381]
  111. ACS Appl Mater Interfaces. 2022 Jun 8;14(22):25693-25700 [PMID: 35623065]
  112. Phys Rev Lett. 2022 Feb 11;128(6):067601 [PMID: 35213175]
  113. IEEE Trans Neural Netw. 2003;14(6):1569-72 [PMID: 18244602]
  114. Nat Nanotechnol. 2020 Jul;15(7):545-557 [PMID: 32647168]

Grants

  1. AoE/P-701/20/Research Grants Council of Hong Kong
  2. 14206721/Research Grants Council of Hong Kong
  3. 14220022/Research Grants Council of Hong Kong
  4. 14203623/Research Grants Council of Hong Kong
  5. C4050-21EF/CRF Group Research Scheme
  6. C1015-21EF/CRF Group Research Scheme
  7. C4028-20EF/CRF Group Research Scheme
  8. /CUHK Group Research Scheme
  9. PDFS2223-4S06/RGC Postdoctoral Fellowship
  10. /CUHK Postdoctoral Fellowship
  11. /CUHK Fund for Joint Research Labs
  12. 2023B1515120049/Basic and Applied Basic Research Foundation of Guangdong Province

Word Cloud

Created with Highcharts 10.0.02Dcomputingferroelectricdevicessensingdataintegrationmaterialstransmissionmemoryunitsnovelin-memoryarchitecturesreviewedferroelectrics-integratedapplicationneuraldevicequantitysensornodeswithincurrentsystemsrapidlyincreasingtandempresencebottlenecksensorsobstructssystem'sefficiencyspeedminimizelatencyin-sensorproposedalternativesconventionalvonNeumannarchitectureaimingdata-intensiveapplicationsexpectedbuildduedangling-bond-freesurfaceultra-fastpolarizationflippingultra-lowpowerconsumptionferroelectricsrecentprogressin-sensingneuromorphicExperimentaltheoreticalprogressesincludingpassiveactivefollowedperceptionNotablyusedsimulatesynapticweightsneuronalmodelfunctionsnetworksimageprocessingemergingconfigurationpotentialexpandsensor-memoryfieldleadingnewpossibilitiesmodernelectronicsEmergingFerroelectricDevicesIn-SensorIn-MemoryComputingin���memoryin���sensornetwork

Similar Articles

Cited By