Genome-wide analysis of UDP-glycosyltransferases family and identification of UGT genes involved in drought stress of .

Bowen Chen, Xinrui Wang, Hanwen Yu, Nan Dong, Jing Li, Xiangwei Chang, Jutao Wang, Chao Jiang, Juan Liu, Xiulian Chi, Liangping Zha, Shuangying Gui
Author Information
  1. Bowen Chen: College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
  2. Xinrui Wang: College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
  3. Hanwen Yu: College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
  4. Nan Dong: College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
  5. Jing Li: College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
  6. Xiangwei Chang: College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
  7. Jutao Wang: College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
  8. Chao Jiang: State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
  9. Juan Liu: Chinese Academy of Medical Sciences Research Unit (No. 2019RU057), National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
  10. Xiulian Chi: Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China.
  11. Liangping Zha: College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
  12. Shuangying Gui: College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.

Abstract

Introduction: The uridine diphosphate (UDP)-glycosyltransferase (UGT) family is the largest glycosyltransferase family, which is involved in the biosynthesis of natural plant products and response to abiotic stress. UGT has been studied in many medicinal plants, but there are few reports on Platycodon grandiflorus. This study is devoted to genome-wide analysis of UGT family and identification of UGT genes involved in drought stress of Platycodon grandiflorus (PgUGTs).
Methods: The genome data of Platycodon grandiflorus was used for genome-wide identification of PgUGTs, online website and bioinformatics analysis software was used to conduct bioinformatics analysis of PgUGT genes and the genes highly responsive to drought stress were screened out by qRT-PCR, these genes were cloned and conducted bioinformatics analysis.
Results: A total of 75 PgUGT genes were identified in P.grandiflorus genome and clustered into 14 subgroups. The PgUGTs were distributed on nine chromosomes, containing multiple cis-acting elements and 22 pairs of duplicate genes were identified. Protein-protein interaction analysis was performed to predict the interaction between PgUGT proteins. Additionally, six genes were upregulated after 3d under drought stress and three genes (PGrchr09G0563, PGrchr06G0523, PGrchr06G1266) responded significantly to drought stress, as confirmed by qRT-PCR. This was especially true for PGrchr06G1266, the expression of which increased 16.21-fold after 3d of treatment. We cloned and conducted bioinformatics analysis of three candidate genes, both of which contained conserved motifs and several cis-acting elements related to stress response, PGrchr06G1266 contained the most elements.
Discussion: PgGT1 was confirmed to catalyze the C-3 position of platycodin D and only eight amino acids showed differences between gene PGr008G1527 and PgGT1, which means PGr008G1527 may be able to catalyze the C-3 position of platycodin D in the same manner as PgGT1. Seven genes were highly expressed in the roots, stems, and leaves, these genes may play important roles in the development of the roots, stems, and leaves of P. grandiflorus. Three genes were highly responsive to drought stress, among which the expression of PGrchr06G1266 was increased 16.21-fold after 3d of drought stress treatment, indicating that PGrchr06G1266 plays an important role in drought stress tolerance. To summarize, this study laied the foundation to better understand the molecular bases of responses to drought stress and the biosynthesis of platycodin.

Keywords

References

  1. Sci Rep. 2017 Jul 19;7(1):5926 [PMID: 28725058]
  2. Angew Chem Int Ed Engl. 2023 May 2;62(19):e202301309 [PMID: 36861146]
  3. J Plant Physiol. 2016 Nov 1;206:87-97 [PMID: 27721120]
  4. Nat Genet. 2010 Oct;42(10):833-9 [PMID: 20802477]
  5. Biomed Pharmacother. 2019 Dec;120:109496 [PMID: 31610427]
  6. BMC Plant Biol. 2023 Apr 19;23(1):204 [PMID: 37076827]
  7. Spectrochim Acta A Mol Biomol Spectrosc. 2016 Nov 5;168:199-205 [PMID: 27294548]
  8. BMC Genomics. 2012 May 08;13:175 [PMID: 22568875]
  9. PLoS One. 2013;8(3):e59924 [PMID: 23533660]
  10. Plant Sci. 2022 Aug;321:111314 [PMID: 35696914]
  11. Int J Biol Macromol. 2024 Feb;257(Pt 1):128617 [PMID: 38070802]
  12. Front Plant Sci. 2019 Nov 26;10:1376 [PMID: 31849999]
  13. Int J Mol Sci. 2022 Jun 29;23(13): [PMID: 35806246]
  14. Biochem J. 1997 Sep 15;326 ( Pt 3):929-39 [PMID: 9334165]
  15. Mol Plant Microbe Interact. 2013 Jul;26(7):781-92 [PMID: 23550529]
  16. J Cell Biochem. 2019 Aug;120(8):14028-14034 [PMID: 30945345]
  17. Int Immunopharmacol. 2022 Mar;104:108510 [PMID: 34999393]
  18. Eur J Pharmacol. 2020 Jun 5;876:172946 [PMID: 31996320]
  19. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Sep 25;777(1-2):61-6 [PMID: 12270200]
  20. Mol Genet Genomics. 2015 Oct;290(5):1805-18 [PMID: 25851236]
  21. Plant J. 2016 Mar;85(6):730-42 [PMID: 26859691]
  22. BMC Plant Biol. 2023 Dec 7;23(1):626 [PMID: 38062387]
  23. Plant J. 2017 Jul;91(2):237-250 [PMID: 28370633]
  24. J Biol Chem. 2001 Feb 9;276(6):4338-43 [PMID: 11042215]
  25. Planta. 2014 Jun;239(6):1265-79 [PMID: 24647682]
  26. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  27. Gene. 2014 Feb 15;536(1):186-92 [PMID: 23978613]
  28. Plant J. 2012 Mar;69(6):1030-42 [PMID: 22077743]
  29. Planta. 2021 Dec 11;255(1):20 [PMID: 34894286]
  30. Int J Biol Macromol. 2019 Dec 1;141:1220-1227 [PMID: 31521659]
  31. RSC Adv. 2021 Mar 15;11(18):10814-10826 [PMID: 35423572]
  32. Plant Sci. 2015 May;234:60-73 [PMID: 25804810]
  33. Phytother Res. 2018 Nov;32(11):2235-2246 [PMID: 30039882]
  34. BMC Plant Biol. 2020 Oct 7;20(1):459 [PMID: 33028214]
  35. New Phytol. 2020 Apr;226(2):362-372 [PMID: 31828806]
  36. Trends Plant Sci. 2000 Sep;5(9):380-6 [PMID: 10973093]
  37. Toxicol Appl Pharmacol. 2013 Mar 1;267(2):174-83 [PMID: 23319015]
  38. Int Immunopharmacol. 2016 Nov;40:474-479 [PMID: 27743553]
  39. Front Plant Sci. 2017 Mar 22;8:389 [PMID: 28382047]
  40. Plant Physiol. 2016 May;171(1):139-51 [PMID: 26993618]
  41. Plant J. 2016 Oct;88(1):26-42 [PMID: 27273756]
  42. Prev Nutr Food Sci. 2014 Jun;19(2):59-68 [PMID: 25054103]
  43. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):E3452-E3461 [PMID: 28389569]
  44. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5623-7 [PMID: 16592474]
  45. Sci Rep. 2017 Apr 20;7:46629 [PMID: 28425481]
  46. Sci Rep. 2020 Sep 21;10(1):15394 [PMID: 32958789]
  47. J Exp Bot. 2017 Jan 1;68(3):597-612 [PMID: 28204516]
  48. Phytomedicine. 2019 Jan;52:254-263 [PMID: 30599906]
  49. Plant Biotechnol J. 2018 Jan;16(1):337-348 [PMID: 28640934]
  50. J Nutr Biochem. 2000 Sep;11(9):420-4 [PMID: 11091095]
  51. Plant Cell. 2010 Aug;22(8):2660-79 [PMID: 20798329]
  52. Plants (Basel). 2022 Sep 19;11(18): [PMID: 36145837]
  53. Plants (Basel). 2022 May 23;11(10): [PMID: 35631807]
  54. Molecules. 2017 Nov 07;22(11): [PMID: 29112148]
  55. J Ethnopharmacol. 2017 Jun 9;205:41-50 [PMID: 28473244]

Word Cloud

Created with Highcharts 10.0.0genesstressdroughtanalysisgrandiflorusUGTPGrchr06G1266familyPlatycodonidentificationbioinformaticsinvolvedgenome-widePgUGTsPgUGThighlyelements3dexpressionPgGT1platycodinbiosynthesisresponsestudygenomeusedresponsiveqRT-PCRclonedconductedidentifiedPcis-actinginteractionthreeconfirmedincreased1621-foldtreatmentcontainedcatalyzeC-3positionDPGr008G1527mayrootsstemsleavesimportantIntroduction:uridinediphosphateUDP-glycosyltransferaselargestglycosyltransferasenaturalplantproductsabioticstudiedmanymedicinalplantsreportsdevotedMethods:dataonlinewebsitesoftwareconductscreenedResults:total75clustered14subgroupsdistributedninechromosomescontainingmultiple22pairsduplicateProtein-proteinperformedpredictproteinsAdditionallysixupregulatedPGrchr09G0563PGrchr06G0523respondedsignificantlyespeciallytruecandidateconservedmotifsseveralrelatedDiscussion:eightaminoacidsshoweddifferencesgenemeansablemannerSevenexpressedplayrolesdevelopmentThreeamongindicatingplaysroletolerancesummarizelaiedfoundationbetterunderstandmolecularbasesresponsesGenome-wideUDP-glycosyltransferasesUDP-glycosyltransferase

Similar Articles

Cited By