Cost-Effectiveness Analysis of Digital Breast Tomosynthesis and Mammography in Breast Cancer Screening: A Markov Modeling Study.

Wei-Shiuan Chung, Thomas T H Wan, Yu Tsz Shiu, Hon-Yi Shi
Author Information
  1. Wei-Shiuan Chung: Department of Medical Imaging, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
  2. Thomas T H Wan: School of Global Health Management and Informatics, University of Central Florida, Orlando, USA.
  3. Yu Tsz Shiu: Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung, Taiwan.
  4. Hon-Yi Shi: Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung, Taiwan. hshi@kmu.edu.tw.

Abstract

BACKGROUND: Mammography (MG) has demonstrated its effectiveness in diminishing mortality and advanced-stage breast cancer incidences in breast screening initiatives. Notably, research has accentuated the superior diagnostic efficacy and cost-effectiveness of digital breast tomosynthesis (DBT). However, the scope of evidence validating the cost-effectiveness of DBT remains limited, prompting a requisite for more comprehensive investigation. The present study aimed to rigorously evaluate the cost-effectiveness of DBT plus MG (DBT-MG) compared to MG alone within the framework of Taiwan's National Health Insurance program.
METHODS: All parameters for the Markov decision tree model, encompassing event probabilities, costs, and utilities (quality-adjusted life years, QALYs), were sourced from reputable literature, expert opinions, and official records. With 10,000 iterations, a 2-year cycle length, a 30-year time horizon, and a 2% annual discount rate, the analysis determined the incremental cost-effectiveness ratio (ICER) to compare the cost-effectiveness of the two screening methods. Probabilistic and one-way sensitivity analyses were also conducted to demonstrate the robustness of findings.
RESULTS: The ICER of DBT-MG compared to MG was US$5971.5764/QALYs. At a willingness-to-pay (WTP) threshold of US$33,004 (Gross Domestic Product of Taiwan in 2021) per QALY, more than 98% of the probabilistic simulations favored adopting DBT-MG versus MG. The one-way sensitivity analysis also shows that the ICER depended heavily on recall rates, biopsy rates, and positive predictive value (PPV2).
CONCLUSION: DBT-MG shows enhanced diagnostic efficacy, potentially diminishing recall costs. While exhibiting a higher biopsy rate, DBT-MG aids in the detection of early-stage breast cancers, reduces recall rates, and exhibits notably superior cost-effectiveness.

Keywords

References

  1. Cancers (Basel). 2023 Apr 22;15(9): [PMID: 37173880]
  2. JAMA Intern Med. 2019 Sep 01;179(9):1230-1239 [PMID: 31260054]
  3. Ann Intern Med. 2022 Jan;175(1):11-19 [PMID: 34807717]
  4. J Formos Med Assoc. 2022 Mar;121(3):633-642 [PMID: 34246512]
  5. Med Clin North Am. 2017 Jul;101(4):725-741 [PMID: 28577623]
  6. Lancet Oncol. 2022 May;23(5):554-555 [PMID: 35427472]
  7. J Clin Oncol. 2023 Feb 10;41(5):1046-1058 [PMID: 36265088]
  8. J Prev Med Public Health. 2016 Nov;49(6):367-375 [PMID: 27951629]
  9. Radiology. 2023 Jun;307(5):e223142 [PMID: 37249433]
  10. J Chin Med Assoc. 2018 Jan;81(1):70-80 [PMID: 29129518]
  11. Eur Radiol. 2020 Oct;30(10):5437-5445 [PMID: 32382844]
  12. Radiology. 2023 May;307(4):e220361 [PMID: 37014237]
  13. Eur J Cancer. 2018 Nov;104:39-46 [PMID: 30316869]
  14. BMJ Open. 2020 Oct 10;10(10):e036341 [PMID: 33039986]
  15. JAMA Oncol. 2023 Jun 1;9(6):808-814 [PMID: 37103922]
  16. CMAJ Open. 2021 Apr 22;9(2):E443-E450 [PMID: 33888549]
  17. JAMA. 2022 Jun 14;327(22):2220-2230 [PMID: 35699706]
  18. Radiology. 2015 Mar;274(3):772-80 [PMID: 25350548]
  19. J Clin Oncol. 2013 Mar 1;31(7):961-5 [PMID: 23129741]
  20. CA Cancer J Clin. 2013 Sep;63(5):291-2 [PMID: 23842852]
  21. J Natl Cancer Inst. 2020 Jun 1;112(6):582-589 [PMID: 31503283]
  22. Lancet Oncol. 2022 May;23(5):601-611 [PMID: 35427470]
  23. JAMA. 2015 Oct 20;314(15):1599-614 [PMID: 26501536]
  24. Cancers (Basel). 2023 Sep 19;15(18): [PMID: 37760607]
  25. AJR Am J Roentgenol. 2016 Nov;207(5):1152-1155 [PMID: 27547861]
  26. J Med Econ. 2023 Jan-Dec;26(1):850-861 [PMID: 37278659]
  27. J Epidemiol Glob Health. 2022 Dec;12(4):383-389 [PMID: 36040655]

Grants

  1. MOST 108-2410-H-037-006-SS3/Ministry of Science and Technology
  2. 111-2410-H-037-002-MY3/Ministry of Science and Technology

MeSH Term

Humans
Cost-Benefit Analysis
Breast Neoplasms
Mammography
Female
Markov Chains
Early Detection of Cancer
Taiwan
Middle Aged
Quality-Adjusted Life Years
Aged
Cost-Effectiveness Analysis

Word Cloud

Created with Highcharts 10.0.0cost-effectivenessMGbreastDBT-MGMammographyscreeningDBTMarkovanalysisICERrecallratesBreastdiminishingcancersuperiordiagnosticefficacytomosynthesiscomparedmodelcostsrateone-waysensitivityalsoshowsbiopsyDigitalBACKGROUND:demonstratedeffectivenessmortalityadvanced-stageincidencesinitiativesNotablyresearchaccentuateddigitalHoweverscopeevidencevalidatingremainslimitedpromptingrequisitecomprehensiveinvestigationpresentstudyaimedrigorouslyevaluateplusalonewithinframeworkTaiwan'sNationalHealthInsuranceprogramMETHODS:parametersdecisiontreeencompassingeventprobabilitiesutilitiesquality-adjustedlifeyearsQALYssourcedreputableliteratureexpertopinionsofficialrecords10000iterations2-yearcyclelength30-yeartimehorizon2%annualdiscountdeterminedincrementalratiocomparetwomethodsProbabilisticanalysesconducteddemonstraterobustnessfindingsRESULTS:US$59715764/QALYswillingness-to-payWTPthresholdUS$33004GrossDomesticProductTaiwan2021perQALY98%probabilisticsimulationsfavoredadoptingversusdependedheavilypositivepredictivevaluePPV2CONCLUSION:enhancedpotentiallyexhibitinghigheraidsdetectionearly-stagecancersreducesexhibitsnotablyCost-EffectivenessAnalysisTomosynthesisCancerScreening:ModelingStudyCost-utility

Similar Articles

Cited By