Towards sustainable and humane dairy farming: A low-cost electrochemical sensor for on-site diagnosis of milk fever.

Ali Soleimani, Farbod Amirghasemi, Abdulrahman Al-Shami, Sina Khazaee Nejad, Alicia Tsung, Yuxuan Wang, Sandra Lara Galindo, Delaram Parvin, Amber Olson, Amir Avishai, Maral P S Mousavi
Author Information
  1. Ali Soleimani: Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90007, California, United States.
  2. Farbod Amirghasemi: Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90007, California, United States.
  3. Abdulrahman Al-Shami: Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90007, California, United States.
  4. Sina Khazaee Nejad: Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90007, California, United States.
  5. Alicia Tsung: Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, 925 Bloom Walk HED 216, Los Angeles, 90007, California, United States.
  6. Yuxuan Wang: Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90007, California, United States.
  7. Sandra Lara Galindo: Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90007, California, United States.
  8. Delaram Parvin: Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90007, California, United States.
  9. Amber Olson: Chaska Valley Veterinary Clinic, 115 W 3rd Street, Chaska, 55318, Minnesota, United States.
  10. Amir Avishai: Core Center for Excellence in Nano Imaging, University of Southern California, 925 Bloom Walk, Los Angeles, 90089, California, United States.
  11. Maral P S Mousavi: Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90007, California, United States. Electronic address: mousavi.maral@usc.edu.

Abstract

Milk fever is a metabolic disorder that predominantly affects dairy animals during the periparturient period and within four weeks of calving. Milk fever is primarily attributed to a decrease in the animal's serum Ca levels. Clinical milk fever occurs when Ca concentration drops below 1.5 mM (6 mg/dL). Without prompt intervention, clinical milk fever leads to noticeable physical symptoms and health complications including coma and fatality. Subclinical milk fever is characterized by Ca levels between 1.5 and 2.12 mM (6-8.48 mg/dL). Approximately 50% of multiparous dairy cows suffer from subclinical milk fever during the transition to lactation. The economic impact of milk fever, both direct and indirect, is substantial, posing challenges for farmers. To address this issue, we developed a low-cost electrochemical sensor that can measure bovine serum calcium levels on-site, providing an opportunity for early detection of subclinical and clinical milk fever and early intervention. This calcium sensor is a scalable solid contact ion sensing platform that incorporates a polymeric calcium-selective membrane and ionic liquid-based reference membrane into laser-induced graphene (LIG) electrodes. Our sensing platform demonstrates a sensitivity close to the theoretical Nernstian value (29.6 mV/dec) with a limit of detection of 15.6 ��M and selectivity against the species in bovine serum. Moreover, our sensor can detect Ca in bovine serum with 91% recovery.

Keywords

References

  1. Science. 2004 Oct 22;306(5696):666-9 [PMID: 15499015]
  2. Anal Chem. 2013 Nov 5;85(21):10495-502 [PMID: 24080025]
  3. Membranes (Basel). 2019 Nov 29;9(12): [PMID: 31795415]
  4. Biosens Bioelectron. 2022 Jan 1;195:113628 [PMID: 34543917]
  5. Materials (Basel). 2022 Nov 04;15(21): [PMID: 36363396]
  6. Nat Commun. 2014 Dec 10;5:5714 [PMID: 25493446]
  7. Talanta. 2020 Feb 1;208:120374 [PMID: 31816715]
  8. Small. 2024 Aug;20(31):e2311745 [PMID: 38587168]
  9. Analyst. 2012 Feb 7;137(3):618-23 [PMID: 22140676]
  10. J Dairy Sci. 2006 Jul;89(7):2775-83 [PMID: 16772597]
  11. Mikrochim Acta. 2022 Feb 26;189(3):122 [PMID: 35218439]
  12. Biosens Bioelectron. 2021 Jan 1;171:112723 [PMID: 33096432]
  13. Acta Vet Scand. 2002;43(1):1-19 [PMID: 12071112]
  14. Anal Bioanal Chem. 2021 Oct;413(25):6201-6212 [PMID: 34468795]
  15. Anal Sci. 2008 Oct;24(10):1221-30 [PMID: 18845878]
  16. Anal Chem. 2014 Sep 2;86(17):8687-92 [PMID: 25117517]
  17. Biosens Bioelectron. 2020 Oct 15;166:112471 [PMID: 32777726]
  18. Vet Rec. 1975 Aug 2;97(05):87-92 [PMID: 1154631]
  19. Biosens Bioelectron. 2022 Feb 1;197:113777 [PMID: 34781177]
  20. Anal Chem. 2007 Jun 15;79(12):4621-6 [PMID: 17508716]
  21. Anal Chem. 2002 Aug 1;74(15):420A-426A [PMID: 12175191]
  22. J Dairy Sci. 2006 Feb;89(2):669-84 [PMID: 16428636]
  23. Vet J. 2011 Apr;188(1):122-4 [PMID: 20434377]
  24. Membranes (Basel). 2020 Jun 23;10(6): [PMID: 32585903]
  25. Chem Rev. 1997 Dec 18;97(8):3083-3132 [PMID: 11851486]
  26. ACS Meas Sci Au. 2023 Mar 08;3(3):162-193 [PMID: 37360038]
  27. Chem Commun (Camb). 2016 Aug 11;52(62):9703-6 [PMID: 27405722]
  28. Anal Chim Acta. 2014 Apr 22;821:72-80 [PMID: 24703216]
  29. Anal Chem. 2007 Sep 15;79(18):7187-91 [PMID: 17708675]
  30. Anal Chem. 2013 Oct 1;85(19):9350-5 [PMID: 24047234]
  31. Mikrochim Acta. 2023 Jan 3;190(1):43 [PMID: 36595104]
  32. Mikrochim Acta. 2023 May 24;190(6):237 [PMID: 37222781]
  33. Biosensors (Basel). 2023 Jan 30;13(2): [PMID: 36831970]
  34. Adv Mater. 2017 Feb;29(7): [PMID: 27896856]

Grants

  1. DP2 GM150018/NIGMS NIH HHS

MeSH Term

Animals
Cattle
Biosensing Techniques
Female
Electrochemical Techniques
Calcium
Dairying
Parturient Paresis
Equipment Design
Graphite
Limit of Detection
Cattle Diseases

Chemicals

Calcium
Graphite

Word Cloud

Created with Highcharts 10.0.0fevermilkserumCasensorsensingMilkdairylevelsbovineon-site1interventionclinicalsubclinicallow-costelectrochemicalcancalciumearlydetectionplatformmembranegrapheneLIGmetabolicdisorderpredominantlyaffectsanimalsperiparturientperiodwithinfourweekscalvingprimarilyattributeddecreaseanimal'sClinicaloccursconcentrationdrops5 mM6 mg/dLWithoutpromptleadsnoticeablephysicalsymptomshealthcomplicationsincludingcomafatalitySubclinicalcharacterized5212 mM6-848 mg/dLApproximately50%multiparouscowssuffertransitionlactationeconomicimpactdirectindirectsubstantialposingchallengesfarmersaddressissuedevelopedmeasureprovidingopportunityscalablesolidcontactionincorporatespolymericcalcium-selectiveionicliquid-basedreferencelaser-inducedelectrodesdemonstratessensitivityclosetheoreticalNernstianvalue296mV/declimit156 ��MselectivityspeciesMoreoverdetect91%recoveryTowardssustainablehumanefarming:diagnosisCalciumFrugalsensorsLaserinducedPoint-of-careanalysisPotentiometric

Similar Articles

Cited By