genome assembly and population genomics of a shrub tree (Hance) krass provide insights into the adaptive color variations.

Weicheng Huang, Bin Xu, Wei Guo, Zecheng Huang, Yongquan Li, Wei Wu
Author Information
  1. Weicheng Huang: College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
  2. Bin Xu: Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China.
  3. Wei Guo: College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
  4. Zecheng Huang: College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
  5. Yongquan Li: College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
  6. Wei Wu: College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China.

Abstract

Flower color is a classic example of an ecologically important trait under selection in plants. Understanding the genetic mechanisms underlying shifts in flower color can provide key insights into ecological speciation. In this study, we investigated the genetic basis of flower color divergence in , a shrub tree species exhibiting natural variation in flower color. We assembled a high-quality genome assembly for with a contig N50 of 2.39 Mb and a scaffold N50 of 16.21 Mb. The assembly was annotated with 46,430 protein-coding genes and 1,560 non-coding RNAs. Genome synteny analysis revealed two recent tetraploidization events in , estimated to have occurred at approximately 17 and 63 million years ago. These tetraploidization events resulted in massive duplicated gene content, with over 70% of genes retained in collinear blocks. Gene family members of the core regulators of the MBW complex were significantly expanded in compared to Arabidopsis, suggesting that these duplications may have provided raw genetic material for the evolution of novel regulatory interactions and the diversification of anthocyanin pigmentation. Transcriptome profiling of flowers revealed differential expression of 9 transcription factors related to anthocyanin biosynthesis between the two ecotypes. Six of these differentially expressed transcription factors were identified as high-confidence candidates for adaptive evolution based on positive selection signals. This study provides insights into the genetic basis of flower color divergence and the evolutionary mechanisms underlying ecological adaptation in plants.

Keywords

References

  1. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  2. Plant Cell. 2014 Mar;26(3):962-80 [PMID: 24642943]
  3. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  4. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14 [PMID: 19274634]
  5. Front Plant Sci. 2023 Jan 20;14:1044918 [PMID: 36743498]
  6. Nucleic Acids Res. 2018 Nov 30;46(21):e126 [PMID: 30107434]
  7. Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432 [PMID: 30357350]
  8. Plant Cell. 2002 Sep;14(9):2121-35 [PMID: 12215510]
  9. J Plant Res. 2007 May;120(3):445-9 [PMID: 17277900]
  10. Curr Opin Plant Biol. 2001 Oct;4(5):447-56 [PMID: 11597504]
  11. Essays Biochem. 2022 Dec 8;66(6):753-768 [PMID: 36205404]
  12. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73 [PMID: 291943]
  13. Mob DNA. 2015 Jun 02;6:11 [PMID: 26045719]
  14. Methods Mol Biol. 2019;1962:1-14 [PMID: 31020551]
  15. Ann Bot. 2007 Sep;100(3):603-19 [PMID: 17670752]
  16. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  17. Nat Plants. 2019 Aug;5(8):833-845 [PMID: 31383970]
  18. Science. 2012 Mar 2;335(6072):1090-2 [PMID: 22300852]
  19. Nat Plants. 2019 Nov;5(11):1145-1153 [PMID: 31712761]
  20. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  21. Bioinformatics. 2017 Jul 15;33(14):2202-2204 [PMID: 28369201]
  22. Nat Methods. 2012 Jul 30;9(8):772 [PMID: 22847109]
  23. BMC Bioinformatics. 2003 Sep 11;4:41 [PMID: 12969510]
  24. Front Plant Sci. 2021 Feb 22;12:633979 [PMID: 33692818]
  25. Front Plant Sci. 2022 Nov 08;13:1039329 [PMID: 36426143]
  26. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  27. Front Plant Sci. 2015 Apr 27;6:261 [PMID: 25964787]
  28. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  29. Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354 [PMID: 33156333]
  30. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  31. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20 [PMID: 15980438]
  32. Nucleic Acids Res. 2013 Jul;41(12):e121 [PMID: 23598997]
  33. Plant J. 2008 Mar;53(5):814-27 [PMID: 18036197]
  34. Bioinformatics. 2019 Oct 15;35(20):3961-3969 [PMID: 30903685]
  35. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  36. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  37. Plant J. 2011 Apr;66(1):94-116 [PMID: 21443626]
  38. Genome Res. 2004 May;14(5):988-95 [PMID: 15123596]
  39. New Phytol. 2013 Apr;198(1):59-70 [PMID: 23398515]
  40. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  41. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  42. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
  43. Trends Plant Sci. 2013 Sep;18(9):477-83 [PMID: 23870661]
  44. Nature. 2007 Oct 18;449(7164):913-8 [PMID: 17943131]
  45. Plant Sci. 2021 May;306:110848 [PMID: 33775373]
  46. Genetics. 2013 May;194(1):255-63 [PMID: 23335333]
  47. Nucleic Acids Res. 2003 Jan 1;31(1):439-41 [PMID: 12520045]
  48. Nat Rev Genet. 2017 Jul;18(7):411-424 [PMID: 28502977]
  49. Mol Plant. 2022 Dec 5;15(12):1841-1851 [PMID: 36307977]
  50. Trends Plant Sci. 2012 Mar;17(3):163-71 [PMID: 22236699]
  51. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12 [PMID: 16845082]
  52. Bioinformatics. 2019 May 15;35(10):1786-1788 [PMID: 30321304]
  53. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  54. New Phytol. 2011 Oct;192(1):266-301 [PMID: 21729086]
  55. Trends Plant Sci. 2005 Feb;10(2):63-70 [PMID: 15708343]
  56. Nat Genet. 2011 May;43(5):491-8 [PMID: 21478889]
  57. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11910-5 [PMID: 10518550]
  58. Nucleic Acids Res. 2013 Jan;41(Database issue):D70-82 [PMID: 23203985]
  59. Bioinformatics. 2020 Apr 1;36(7):2253-2255 [PMID: 31778144]
  60. Methods Mol Biol. 2019;1962:227-245 [PMID: 31020564]
  61. Mol Ecol Resour. 2017 Jan;17(1):27-32 [PMID: 26850166]
  62. Nat Commun. 2020 Mar 18;11(1):1432 [PMID: 32188846]
  63. Appl Plant Sci. 2017 Apr 11;5(4): [PMID: 28439476]
  64. New Phytol. 2014 Dec;204(4):1013-27 [PMID: 25103615]
  65. Nucleic Acids Res. 2021 Jan 8;49(D1):D10-D17 [PMID: 33095870]
  66. Plant Cell. 2006 Apr;18(4):831-51 [PMID: 16531495]
  67. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  68. Hortic Res. 2022 Feb 19;: [PMID: 35184164]
  69. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  70. Curr Opin Plant Biol. 2018 Oct;45(Pt A):36-49 [PMID: 29860175]
  71. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  72. Genome Biol Evol. 2009 Oct 05;1:391-9 [PMID: 20333207]
  73. Bioinformatics. 2015 Aug 1;31(15):2565-7 [PMID: 25819670]
  74. Nature. 2011 May 5;473(7345):97-100 [PMID: 21478875]
  75. Plant Cell. 2009 Nov;21(11):3567-84 [PMID: 19933203]
  76. New Phytol. 2009 Aug;183(3):729-739 [PMID: 19453433]
  77. Appl Microbiol Biotechnol. 2012 Mar;93(6):2447-53 [PMID: 22159735]
  78. Front Plant Sci. 2022 Nov 15;13:1046134 [PMID: 36457536]
  79. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7 [PMID: 15980513]
  80. BMC Bioinformatics. 2014 Nov 25;15:356 [PMID: 25420514]
  81. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  82. Nat Genet. 2010 Mar;42(3):260-3 [PMID: 20101244]
  83. Bioinformatics. 2006 May 15;22(10):1269-71 [PMID: 16543274]
  84. Curr Issues Mol Biol. 2001 Jul;3(3):47-55 [PMID: 11488411]
  85. J Exp Bot. 2011 May;62(8):2465-83 [PMID: 21278228]
  86. Genome Res. 2009 Sep;19(9):1655-64 [PMID: 19648217]
  87. Evolution. 2005 Dec;59(12):2548-59 [PMID: 16526503]
  88. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  89. Trends Plant Sci. 2015 Mar;20(3):176-85 [PMID: 25577424]
  90. Dev Biol. 2024 Jan;505:1-10 [PMID: 37838025]
  91. Methods Mol Biol. 1994;28:9-15 [PMID: 8118521]
  92. Front Plant Sci. 2020 Jun 30;11:991 [PMID: 32714360]
  93. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8 [PMID: 15161969]
  94. Nature. 2014 Jun 19;510(7505):356-62 [PMID: 24919147]
  95. Genome Biol. 2020 Nov 17;21(1):280 [PMID: 33203475]
  96. Mol Phylogenet Evol. 2016 Feb;95:116-36 [PMID: 26585030]
  97. Bioinformatics. 2013 Nov 15;29(22):2933-5 [PMID: 24008419]
  98. Mol Biol Evol. 2014 Jul;31(7):1929-36 [PMID: 24739305]
  99. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]
  100. Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045 [PMID: 27924042]
  101. Nucleic Acids Res. 2021 Jul 2;49(W1):W317-W325 [PMID: 34086934]
  102. Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314 [PMID: 30418610]

Word Cloud

Created with Highcharts 10.0.0colorflowergeneticselectioninsightsecologicaldivergenceassemblyanthocyaninplantsmechanismsunderlyingprovidestudybasisshrubtreenaturalgenomeN50MbgenesrevealedtwotetraploidizationeventsevolutiontranscriptionfactorsbiosynthesisadaptiveadaptationFlowerclassicexampleecologicallyimportanttraitUnderstandingshiftscankeyspeciationinvestigatedspeciesexhibitingvariationassembledhigh-qualitycontig239scaffold1621annotated46430protein-coding1560non-codingRNAsGenomesyntenyanalysisrecentestimatedoccurredapproximately1763millionyearsagoresultedmassiveduplicatedgenecontent70%retainedcollinearblocksGenefamilymemberscoreregulatorsMBWcomplexsignificantlyexpandedcomparedArabidopsissuggestingduplicationsmayprovidedrawmaterialnovelregulatoryinteractionsdiversificationpigmentationTranscriptomeprofilingflowersdifferentialexpression9relatedecotypesSixdifferentiallyexpressedidentifiedhigh-confidencecandidatesbasedpositivesignalsprovidesevolutionarypopulationgenomicsHancekrassvariationsBartheabartheiwhole-genomeduplication

Similar Articles

Cited By (1)