biofilm formation of and associated with bacterial vaginosis and aerobic vaginitis.

Xiang Shang, Huihui Bai, Linyuan Fan, Xin Zhang, Xiaowen Zhao, Zhaohui Liu
Author Information
  1. Xiang Shang: Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
  2. Huihui Bai: Department of Clinical Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
  3. Linyuan Fan: Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
  4. Xin Zhang: Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
  5. Xiaowen Zhao: Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.
  6. Zhaohui Liu: Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China.

Abstract

Objective: To determine the optimum biofilm formation ratio of () in a mixed culture with ().
Methods: ATCC14018, ATCC25922, as well as five strains of were selected from the vaginal sources of patients whose biofilm forming capacity was determined by the Crystal Violet method. The biofilm forming capacity of in anaerobic and non-anaerobic environments were compared using the identical assay. The Crystal Violet method was also used to determine the biofilm forming capacity of a co-culture of and in different ratios. After Live/Dead staining, biofilm thickness was measured using confocal laser scanning microscopy, and biofilm morphology was observed by scanning electron microscopy.
Results: The biofilm forming capacity of under anaerobic environment was similar to that in a 5% CO environment. The biofilm forming capacity of and was stronger at 10:10 CFU/mL than at other ratios (<0.05). Their thicknesses were greater at 10:10 CFU/mL than at the other ratios, with the exception of 10:10 CFU/mL (<0.05), under laser scanning microscopy. Scanning electron microscopy revealed increased biofilm formation at 10:10 CFU/mL and 10:10 CFU/mL, but no discernible was observed at 10:10 CFU/mL.
Conclusion: and showed the greatest biofilm forming capacity at a concentration of 10:10 CFU/mL at 48 hours and could be used to simulate a mixed infection of bacterial vaginosis and aerobic vaginitis .

Keywords

References

  1. Res Microbiol. 2017 Nov - Dec;168(9-10):865-874 [PMID: 28232119]
  2. Front Cell Infect Microbiol. 2022 Mar 08;12:860589 [PMID: 35372135]
  3. PLoS One. 2023 Nov 30;18(11):e0294698 [PMID: 38032961]
  4. Acta Odontol Latinoam. 2015 Dec;28(3):210-4 [PMID: 27095620]
  5. Int J Environ Res Public Health. 2014 Jul 10;11(7):6979-7000 [PMID: 25014248]
  6. Nat Rev Microbiol. 2018 Jan;16(1):19-31 [PMID: 29062072]
  7. Clin Microbiol Rev. 2016 Apr;29(2):223-38 [PMID: 26864580]
  8. Taiwan J Obstet Gynecol. 2016 Feb;55(1):40-4 [PMID: 26927246]
  9. PeerJ. 2018 Feb 21;6:e4317 [PMID: 29492333]
  10. Eur J Clin Microbiol Infect Dis. 2013 Aug;32(8):977-84 [PMID: 23443475]
  11. Front Microbiol. 2021 Feb 22;12:613155 [PMID: 33692765]
  12. PLoS One. 2016 Jan 26;11(1):e0148052 [PMID: 26811897]
  13. NPJ Biofilms Microbiomes. 2017 Feb 2;3:3 [PMID: 28649404]
  14. BMC Infect Dis. 2017 Jun 5;17(1):394 [PMID: 28583109]
  15. J Infect Dev Ctries. 2020 Jan 31;14(1):48-58 [PMID: 32088684]
  16. Future Microbiol. 2019 Mar;14:365-368 [PMID: 30854891]
  17. Popul Health Manag. 2020 Oct;23(S1):S13-S21 [PMID: 32985960]
  18. J Basic Microbiol. 2014 Jul;54(7):750-7 [PMID: 23686681]
  19. Microorganisms. 2023 Aug 30;11(9): [PMID: 37764030]
  20. Arch Gynecol Obstet. 2016 Jul;294(1):109-14 [PMID: 26781259]
  21. Crit Rev Microbiol. 2017 Nov;43(6):651-667 [PMID: 28358585]
  22. PLoS One. 2020 Sep 14;15(9):e0238993 [PMID: 32925983]
  23. J Appl Microbiol. 2016 Aug;121(2):309-19 [PMID: 26811181]
  24. Eur J Obstet Gynecol Reprod Biol. 2023 Oct;289:9-18 [PMID: 37611538]
  25. Front Cell Infect Microbiol. 2020 Mar 04;10:83 [PMID: 32195197]
  26. Front Cell Infect Microbiol. 2022 May 11;12:863208 [PMID: 35646732]
  27. Antibiotics (Basel). 2021 Aug 13;10(8): [PMID: 34439028]
  28. NPJ Biofilms Microbiomes. 2017 Oct 19;3:25 [PMID: 29062489]
  29. Sex Transm Dis. 2011 Jul;38(7):672-4 [PMID: 21844715]
  30. Pathog Dis. 2016 Apr;74(3): [PMID: 26782142]
  31. Curr Biol. 2014 Oct 20;24(20):2411-6 [PMID: 25308076]
  32. Front Cell Infect Microbiol. 2020 Apr 24;10:168 [PMID: 32391287]
  33. Microbiology (Reading). 2015 Jan;161(Pt 1):168-181 [PMID: 25332378]
  34. Clin Microbiol Rev. 2018 Apr 4;31(3): [PMID: 29618576]
  35. Chin Med J (Engl). 2017 5th Feb;130(3):273-279 [PMID: 28139509]
  36. Trends Microbiol. 2016 Jun;24(6):503-513 [PMID: 27004827]
  37. Diagn Microbiol Infect Dis. 2020 Apr;96(4):114981 [PMID: 31955954]
  38. Arch Gynecol Obstet. 2013 Feb;287(2):329-35 [PMID: 23015152]
  39. Front Cell Infect Microbiol. 2022 Aug 09;12:976057 [PMID: 36017371]
  40. Zhonghua Fu Chan Ke Za Zhi. 2023 Mar 25;58(3):191-197 [PMID: 36935196]
  41. Front Cell Infect Microbiol. 2021 Feb 19;11:568178 [PMID: 33680986]
  42. Pathogens. 2021 Feb 20;10(2): [PMID: 33672647]
  43. PLoS Pathog. 2018 Dec 13;14(12):e1007342 [PMID: 30543717]
  44. Sci Rep. 2020 Oct 27;10(1):18358 [PMID: 33110095]
  45. Front Cell Infect Microbiol. 2022 Jan 05;11:795797 [PMID: 35071046]
  46. Res Microbiol. 2017 Nov - Dec;168(9-10):845-858 [PMID: 28502874]
  47. Mol Diagn Ther. 2019 Feb;23(1):139-147 [PMID: 30721449]
  48. Front Microbiol. 2022 Dec 22;13:1033040 [PMID: 36619994]
  49. Microbiol Spectr. 2016 Jun;4(3): [PMID: 27337476]
  50. Cureus. 2021 Jan 14;13(1):e12700 [PMID: 33614308]
  51. Zhonghua Fu Chan Ke Za Zhi. 2021 Jan 25;56(1):15-18 [PMID: 33486923]
  52. Nutrients. 2017 May 23;9(6): [PMID: 28545241]
  53. J Infect Dis. 2019 Sep 26;220(9):1399-1405 [PMID: 31369673]
  54. Front Med (Lausanne). 2023 Jun 01;10:1138507 [PMID: 37324149]
  55. BJOG. 2002 Jan;109(1):34-43 [PMID: 11845812]
  56. N Engl J Med. 2018 Dec 6;379(23):2246-2254 [PMID: 30575452]
  57. PLoS Pathog. 2017 Mar 30;13(3):e1006238 [PMID: 28358889]
  58. J Infect Dis. 2015 Dec 15;212(12):1856-61 [PMID: 26080369]
  59. Can J Infect Dis Med Microbiol. 2020 Jun 16;2020:1361825 [PMID: 32612729]
  60. Int J Syst Evol Microbiol. 2019 Mar;69(3):679-687 [PMID: 30648938]
  61. J Low Genit Tract Dis. 2022 Jan 1;26(1):68-70 [PMID: 34840242]

MeSH Term

Biofilms
Gardnerella vaginalis
Humans
Escherichia coli
Female
Vaginosis, Bacterial
Microscopy, Electron, Scanning
Microscopy, Confocal
Vagina
Anaerobiosis
Coculture Techniques
Vaginitis

Word Cloud

Created with Highcharts 10.0.0biofilm10:10CFU/mLformingcapacitymicroscopyvaginitisformationmixedratiosscanningbacterialvaginosisaerobicdetermineCrystalVioletmethodanaerobicusingusedlaserobservedelectronenvironment<005Objective:optimumratiocultureMethods:ATCC14018ATCC25922wellfivestrainsselectedvaginalsourcespatientswhosedeterminednon-anaerobicenvironmentscomparedidenticalassayalsoco-culturedifferentLive/DeadstainingthicknessmeasuredconfocalmorphologyResults:similar5%COstrongerthicknessesgreaterexceptionScanningrevealedincreaseddiscernibleConclusion:showedgreatestconcentration48hourssimulateinfectionassociatedEscherichiacoliGardnerellavaginalis

Similar Articles

Cited By