On the evolution of chromosomal regions with high gene strand bias in bacteria.

Jürgen Tomasch, Karel Kopejtka, Sahana Shivaramu, Izabela Mujakić, Michal Koblížek
Author Information
  1. Jürgen Tomasch: Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia. ORCID
  2. Karel Kopejtka: Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia. ORCID
  3. Sahana Shivaramu: Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.
  4. Izabela Mujakić: Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia. ORCID
  5. Michal Koblížek: Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia. ORCID

Abstract

On circular bacterial chromosomes, the majority of genes are coded on the leading strand. This gene strand bias (GSB) ranges from up to 85% in some Bacillota to a little more than 50% in other phyla. The factors determining the extent of the strand bias remain to be found. Here, we report that species in the phylum Gemmatimonadota share a unique chromosome architecture, distinct from neighboring phyla: in a conserved 600-kb region around the terminus of replication, almost all genes were located on the leading strands, while on the remaining part of the chromosome, the strand preference was more balanced. The high strand bias (HSB) region harbors the rRNA clusters, core, and highly expressed genes. Selective pressure for reduction of collisions with DNA replication to minimize detrimental mutations can explain the conservation of essential genes in this region. Repetitive and mobile elements are underrepresented, suggesting reduced recombination frequency by structural isolation from other parts of the chromosome. We propose that the HSB region forms a distinct chromosomal domain. Gemmatimonadota chromosomes evolved mainly by expansion through horizontal gene transfer and duplications outside of the ancient high strand bias region. In support of our hypothesis, we could further identify two Spiroplasma strains on a similar evolutionary path.IMPORTANCEOn bacterial chromosomes, a preferred location of genes on the leading strand has evolved to reduce conflicts between replication and transcription. Despite a vast body of research, the question why bacteria show large differences in their gene strand bias is still not solved. The discovery of "hybrid" chromosomes in different phyla, including Gemmatimonadota, in which a conserved high strand bias is found exclusively in a region at , points toward a role of nucleoid structure, additional to replication, in the evolution of strand preferences. A fine-grained structural analysis of the ever-increasing number of available bacterial genomes could help to better understand the forces that shape the sequential and spatial organization of the cell's information content.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):870-5 [PMID: 17213324]
  2. Trends Microbiol. 2002 Sep;10(9):393-5 [PMID: 12217498]
  3. J Mol Evol. 2001 May;52(5):426-33 [PMID: 11443346]
  4. Nucleic Acids Res. 2024 Apr 24;52(7):3493-3509 [PMID: 38442257]
  5. J Mol Evol. 1998 Dec;47(6):691-6 [PMID: 9847411]
  6. Nucleic Acids Res. 2012 Sep 1;40(17):8210-8 [PMID: 22735706]
  7. BMC Genomics. 2008 Jan 07;9:4 [PMID: 18179692]
  8. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  9. Trends Microbiol. 2016 Oct;24(10):788-800 [PMID: 27364121]
  10. Genome Biol. 2012 Aug 31;13(8):R77 [PMID: 22937822]
  11. BMC Bioinformatics. 2011 Apr 28;12:124 [PMID: 21526987]
  12. Sci Rep. 2017 Sep 5;7(1):10572 [PMID: 28874819]
  13. Nat Microbiol. 2023 Oct;8(10):1799-1808 [PMID: 37653010]
  14. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7795-800 [PMID: 24821787]
  15. Trends Genet. 2003 Nov;19(11):600-3 [PMID: 14585609]
  16. Microbiol Spectr. 2023 Sep 21;:e0111223 [PMID: 37732776]
  17. Microorganisms. 2022 Jan 12;10(1): [PMID: 35056600]
  18. PLoS One. 2010 Jun 25;5(6):e11147 [PMID: 20593022]
  19. PLoS Genet. 2008 Jul 18;4(7):e1000128 [PMID: 18650965]
  20. Genome Biol Evol. 2013;5(12):2436-9 [PMID: 24273314]
  21. Science. 2000 Dec 15;290(5499):2144-8 [PMID: 11118148]
  22. Genome Biol Evol. 2018 Jun 1;10(6):1526-1532 [PMID: 29860283]
  23. Genome Biol Evol. 2019 Aug 1;11(8):2208-2217 [PMID: 31273387]
  24. Genomics. 2022 May;114(3):110368 [PMID: 35447310]
  25. Mol Biol Evol. 2001 Sep;18(9):1789-99 [PMID: 11504858]
  26. Nat Commun. 2018 Nov 7;9(1):4662 [PMID: 30405125]
  27. Microbiology (Reading). 2004 Jun;150(Pt 6):1609-1627 [PMID: 15184548]
  28. Mol Microbiol. 2006 Mar;59(5):1506-18 [PMID: 16468991]
  29. Nat Commun. 2017 Oct 10;8(1):841 [PMID: 29018197]
  30. Annu Rev Microbiol. 2018 Sep 08;72:71-88 [PMID: 29856930]
  31. Mol Cell. 2015 Aug 20;59(4):588-602 [PMID: 26295962]
  32. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  33. Bioinformatics. 2007 Jan 1;23(1):119-21 [PMID: 17038345]
  34. Genomics. 2007 Dec;90(6):733-40 [PMID: 17920810]
  35. Nucleic Acids Res. 2003 Nov 15;31(22):6570-7 [PMID: 14602916]
  36. Genomics Proteomics Bioinformatics. 2022 Dec;20(6):1207-1213 [PMID: 36257484]
  37. Genomics Proteomics Bioinformatics. 2012 Aug;10(4):186-96 [PMID: 23084774]
  38. Microb Genom. 2022 Nov;8(11): [PMID: 36350115]
  39. PLoS Genet. 2010 Jan 15;6(1):e1000808 [PMID: 20090831]
  40. Nucleic Acids Res. 2022 Jan 7;50(D1):D785-D794 [PMID: 34520557]
  41. Nat Commun. 2022 May 12;13(1):2627 [PMID: 35551437]
  42. mBio. 2021 Jun 29;12(3):e0115121 [PMID: 34061591]
  43. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  44. BMC Genomics. 2014 Jun 04;15:430 [PMID: 24899249]
  45. Nucleic Acids Res. 2014 Feb;42(3):1393-413 [PMID: 24106089]
  46. Science. 2001 Nov 23;294(5547):1716-9 [PMID: 11721055]
  47. Nucleic Acids Res. 2019 May 21;47(9):4442-4448 [PMID: 31081040]
  48. Curr Protoc Mol Biol. 2001 Nov;Chapter 2:Unit 2.4 [PMID: 18265184]
  49. Microorganisms. 2022 Dec 22;11(1): [PMID: 36677319]
  50. Mol Biol Evol. 2021 Apr 13;38(4):1570-1579 [PMID: 33313861]
  51. Nat Rev Genet. 2015 Jul;16(7):409-20 [PMID: 26055156]
  52. mSystems. 2023 Apr 27;8(2):e0113022 [PMID: 36786632]
  53. Trends Microbiol. 2017 Jul;25(7):515-521 [PMID: 28216294]
  54. EMBO J. 2004 Oct 27;23(21):4330-41 [PMID: 15470498]
  55. BMC Genomics. 2022 Dec 16;23(1):834 [PMID: 36522693]
  56. Nat Struct Mol Biol. 2024 Mar;31(3):489-497 [PMID: 38177686]
  57. PLoS Genet. 2020 Aug 27;16(8):e1008987 [PMID: 32853297]
  58. Crit Rev Microbiol. 2004;30(2):123-43 [PMID: 15239383]
  59. Mol Cell. 2011 Oct 21;44(2):252-64 [PMID: 22017872]
  60. Nat Commun. 2022 May 12;13(1):2628 [PMID: 35552380]
  61. Cell Cycle. 2010 Jul 1;9(13):2537-43 [PMID: 20581460]
  62. Front Microbiol. 2021 Apr 29;12:662907 [PMID: 33995326]
  63. mSystems. 2022 Aug 30;7(4):e0022822 [PMID: 35913193]
  64. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D32-6 [PMID: 16381877]
  65. Nucleic Acids Res. 2013 Jul;41(12):6058-71 [PMID: 23632166]

Grants

  1. GX19-28778X/Grantová Agentura České Republiky (GAČR)

MeSH Term

Chromosomes, Bacterial
Evolution, Molecular
DNA Replication
Bacteria
Genome, Bacterial
Gene Transfer, Horizontal
DNA, Bacterial

Chemicals

DNA, Bacterial

Word Cloud

Created with Highcharts 10.0.0strandbiasregiongenesgenechromosomesGemmatimonadotareplicationhighbacterialleadingchromosomeevolutionphylafounddistinctconservedHSBstructuralchromosomalevolvedbacteriaorganizationgenomecircularmajoritycodedGSBranges85%Bacillotalittle50%factorsdeterminingextentremainreportspeciesphylumshareuniquearchitectureneighboringphyla:600-kbaroundterminusalmostlocatedstrandsremainingpartpreferencebalancedharborsrRNAclusterscorehighlyexpressedSelectivepressurereductioncollisionsDNAminimizedetrimentalmutationscanexplainconservationessentialRepetitivemobileelementsunderrepresentedsuggestingreducedrecombinationfrequencyisolationpartsproposeformsdomainmainlyexpansionhorizontaltransferduplicationsoutsideancientsupporthypothesisidentifytwoSpiroplasmastrainssimilarevolutionarypathIMPORTANCEOnpreferredlocationreduceconflictstranscriptionDespitevastbodyresearchquestionshowlargedifferencesstillsolveddiscovery"hybrid"differentincludingexclusivelypointstowardrolenucleoidstructureadditionalpreferencesfine-grainedanalysisever-increasingnumberavailablegenomeshelpbetterunderstandforcesshapesequentialspatialcell'sinformationcontentregionsorder

Similar Articles

Cited By