A novel family of defensin-like peptides from Hermetia illucens with antibacterial properties.

Leila Fahmy, Tomas Generalovic, Youssif M Ali, David Seilly, Kesavan Sivanesan, Lajos Kalmar, Miha Pipan, Graham Christie, Andrew J Grant
Author Information
  1. Leila Fahmy: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  2. Tomas Generalovic: Better Origin, Future Business Centre, Cambridge, UK.
  3. Youssif M Ali: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  4. David Seilly: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  5. Kesavan Sivanesan: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  6. Lajos Kalmar: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
  7. Miha Pipan: Better Origin, Future Business Centre, Cambridge, UK.
  8. Graham Christie: Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
  9. Andrew J Grant: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK. ajg60@cam.ac.uk.

Abstract

BACKGROUND: The world faces a major infectious disease challenge. Interest in the discovery, design, or development of antimicrobial peptides (AMPs) as an alternative approach for the treatment of bacterial infections has increased. Insects are a good source of AMPs which are the main effector molecules of their innate immune system. Black Soldier Fly Larvae (BSFL) are being developed for large-scale rearing for food sustainability, waste reduction and as sustainable animal and fish feed. Bioinformatic studies have suggested that BSFL have the largest number of AMPs identified in insects. However, most AMPs identified in BSF have not yet undergone antimicrobial evaluation but are promising leads to treat critical infections.
RESULTS: Jg7197.t1, Jg7902.t1 and Jg7904.t1 were expressed into the haemolymph of larvae following infection with Salmonella enterica serovar Typhimurium and were predicted to be AMPs using the computational tool ampir. The genes encoding these proteins were within 2 distinct clusters in chromosome 1 of the BSF genome. Following removal of signal peptides, predicted structures of the mature proteins were superimposed, highlighting a high degree of structural conservation. The 3 AMPs share primary sequences with proteins that contain a Kunitz-binding domain; characterised for inhibitory action against proteases, and antimicrobial activities. An in vitro antimicrobial screen indicated that heterologously expressed SUMO-Jg7197.t1 and SUMO-Jg7902.t1 did not show activity against 12 bacterial strains. While recombinant SUMO-Jg7904.t1 had antimicrobial activity against a range of Gram-negative and Gram-positive bacteria, including the serious pathogen Pseudomonas aeruginosa.
CONCLUSIONS: We have cloned and purified putative AMPs from BSFL and performed initial in vitro experiments to evaluate their antimicrobial activity. In doing so, we have identified a putative novel defensin-like AMP, Jg7904.t1, encoded in a paralogous gene cluster, with antimicrobial activity against P. aeruginosa.

Keywords

References

  1. Food Res Int. 2014 Oct;64:91-98 [PMID: 30011734]
  2. J Biol Chem. 1995 Oct 20;270(42):25121-6 [PMID: 7559645]
  3. Eur J Med Chem. 2018 Jan 1;143:997-1009 [PMID: 29232589]
  4. Microbiol Spectr. 2022 Feb 23;10(1):e0166421 [PMID: 34985302]
  5. Front Chem. 2017 Jul 12;5:45 [PMID: 28748179]
  6. Endocrinol Metab (Seoul). 2017 Mar;32(1):18-22 [PMID: 28256117]
  7. Front Immunol. 2019 Nov 08;10:2620 [PMID: 31781114]
  8. Pharmaceutics. 2020 Sep 02;12(9): [PMID: 32887353]
  9. Antibiotics (Basel). 2021 Feb 20;10(2): [PMID: 33672685]
  10. PLoS One. 2017 Jan 5;12(1):e0169582 [PMID: 28056070]
  11. Trends Pharmacol Sci. 2019 Jul;40(7):517-528 [PMID: 31230616]
  12. Biochim Biophys Acta. 2016 May;1858(5):926-35 [PMID: 26751595]
  13. Chem Phys Lipids. 2018 Nov;216:73-79 [PMID: 30278162]
  14. Dev Comp Immunol. 2012 Feb;36(2):390-9 [PMID: 21871485]
  15. Int J Antimicrob Agents. 2020 Nov;56(5):106146 [PMID: 32853670]
  16. Sci Rep. 2020 Jun 25;10(1):10330 [PMID: 32587353]
  17. Parasit Vectors. 2019 Nov 14;12(1):537 [PMID: 31727142]
  18. Structure. 1996 Feb 15;4(2):195-209 [PMID: 8805527]
  19. Sci Total Environ. 2020 Jun 25;723:138125 [PMID: 32222512]
  20. J Mol Biol. 2000 Sep 8;302(1):205-17 [PMID: 10964570]
  21. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  22. BMC Microbiol. 2023 Dec 1;23(1):378 [PMID: 38036998]
  23. Bioinformatics. 2021 Jan 29;36(21):5262-5263 [PMID: 32683445]
  24. Front Immunol. 2021 Nov 18;12:745160 [PMID: 34867970]
  25. Genetics. 2005 Dec;171(4):1847-59 [PMID: 16157672]
  26. Nat Biotechnol. 2022 Jul;40(7):1023-1025 [PMID: 34980915]
  27. Toxicon. 2012 Sep 15;60(4):539-50 [PMID: 22683676]
  28. Insect Sci. 2023 Aug;30(4):991-1010 [PMID: 36433821]
  29. Cell Res. 2020 Jan;30(1):50-60 [PMID: 31767972]
  30. Methods Mol Biol. 2020;2112:29-42 [PMID: 32006276]
  31. Macromol Biosci. 2021 Oct;21(10):e2100103 [PMID: 34405955]
  32. J Agric Food Chem. 2022 May 25;70(20):6123-6133 [PMID: 35576531]
  33. Toxins (Basel). 2018 Nov 08;10(11): [PMID: 30413046]
  34. Sci Rep. 2017 Sep 21;7(1):12124 [PMID: 28935900]
  35. Mol Immunol. 2003 Nov;40(7):413-21 [PMID: 14568387]
  36. Prep Biochem Biotechnol. 2019;49(3):279-285 [PMID: 30767702]
  37. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  38. Int J Mol Sci. 2021 Oct 22;22(21): [PMID: 34768832]
  39. Insect Biochem Mol Biol. 2020 Dec;127:103487 [PMID: 33068728]
  40. Biochem Biophys Res Commun. 2002 Jul 26;295(4):796-9 [PMID: 12127963]
  41. G3 (Bethesda). 2021 May 7;11(5): [PMID: 33734373]
  42. Dev Comp Immunol. 2015 Sep;52(1):98-106 [PMID: 25956195]
  43. Sci Rep. 2020 Oct 9;10(1):16875 [PMID: 33037295]
  44. Dev Comp Immunol. 2018 Jan;78:141-148 [PMID: 28966127]
  45. Bioinformatics. 2009 May 1;25(9):1189-91 [PMID: 19151095]
  46. Vet Res. 2021 Feb 25;52(1):32 [PMID: 33632337]
  47. Toxicon. 2021 Aug;199:49-59 [PMID: 34087287]
  48. Mol Biol Evol. 2014 Apr;31(4):984-92 [PMID: 24451325]
  49. J Mol Biol. 1984 Oct 15;179(1):125-42 [PMID: 6502707]
  50. J Biol Chem. 2012 Mar 9;287(11):8434-43 [PMID: 22262861]
  51. J Clin Microbiol. 2004 Mar;42(3):1024-9 [PMID: 15004048]
  52. Macromol Biosci. 2017 Dec;17(12): [PMID: 29068544]
  53. Curr Issues Mol Biol. 2021 Dec 21;44(1):1-13 [PMID: 35723380]
  54. J Appl Microbiol. 2022 Mar;132(3):1573-1596 [PMID: 34606679]
  55. Front Pharmacol. 2018 Mar 28;9:281 [PMID: 29643807]
  56. Cell Mol Life Sci. 2021 May;78(9):4259-4282 [PMID: 33595669]
  57. Am J Physiol Cell Physiol. 2023 Jan 1;324(1):C29-C38 [PMID: 36409176]
  58. BMC Genet. 2012 Nov 15;13:98 [PMID: 23150902]
  59. FEBS J. 2017 Oct;284(19):3320-3338 [PMID: 28796463]
  60. Front Cell Infect Microbiol. 2021 Jun 14;11:668632 [PMID: 34195099]
  61. Dev Comp Immunol. 2015 Feb;48(2):324-41 [PMID: 24950415]
  62. Antimicrob Agents Chemother. 2017 Mar 24;61(4): [PMID: 28167546]
  63. Acta Biomater. 2020 Feb;103:52-67 [PMID: 31874224]
  64. Front Microbiol. 2020 Oct 16;11:582779 [PMID: 33178164]
  65. Bioinformatics. 2015 Mar 15;31(6):849-56 [PMID: 25388148]
  66. J Fish Dis. 2024 Apr;47(4):e13922 [PMID: 38204197]

Grants

  1. BB/M011194/1/BBSRC
  2. BB/M011194/1/BBSRC

MeSH Term

Animals
Defensins
Anti-Bacterial Agents
Diptera
Larva
Microbial Sensitivity Tests
Amino Acid Sequence
Insect Proteins
Antimicrobial Peptides
Salmonella typhimurium
Gram-Negative Bacteria

Word Cloud

Created with Highcharts 10.0.0antimicrobialAMPst1peptidesactivityBSFLidentifiedproteinsaeruginosabacterialinfectionsBlackBSFJg7904expressedlarvaepredictedvitroPseudomonasputativenoveldefensin-likeHermetiaillucensBACKGROUND:worldfacesmajorinfectiousdiseasechallengeInterestdiscoverydesigndevelopmentalternativeapproachtreatmentincreasedInsectsgoodsourcemaineffectormoleculesinnateimmunesystemSoldierFlyLarvaedevelopedlarge-scalerearingfoodsustainabilitywastereductionsustainableanimalfishfeedBioinformaticstudiessuggestedlargestnumberinsectsHoweveryetundergoneevaluationpromisingleadstreatcriticalRESULTS:Jg7197Jg7902haemolymphfollowinginfectionSalmonellaentericaserovarTyphimuriumusingcomputationaltoolampirgenesencodingwithin2distinctclusterschromosome1genomeFollowingremovalsignalstructuresmaturesuperimposedhighlightinghighdegreestructuralconservation3shareprimarysequencescontainKunitz-bindingdomaincharacterisedinhibitoryactionproteasesactivitiesscreenindicatedheterologouslySUMO-Jg7197SUMO-Jg7902show12strainsrecombinantSUMO-Jg7904rangeGram-negativeGram-positivebacteriaincludingseriouspathogenCONCLUSIONS:clonedpurifiedperformedinitialexperimentsevaluateAMPencodedparalogousgeneclusterPfamilyantibacterialpropertiesAlphaFoldAntibioticsAntimicrobialsoldierflyDefensins

Similar Articles

Cited By (4)