Revolutionizing orthopedic healthcare: a systematic review unveiling recombinant antimicrobial peptides.

Vincenzo Pennone, Elena Rosini, Elena Mascheroni, Silvia Gianola, Greta Castellini, Silvia Bargeri, Arianna B Lovati
Author Information
  1. Vincenzo Pennone: Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
  2. Elena Rosini: Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
  3. Elena Mascheroni: Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
  4. Silvia Gianola: Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
  5. Greta Castellini: Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
  6. Silvia Bargeri: Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
  7. Arianna B Lovati: Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.

Abstract

The increasing demand for orthopedic surgeries, including joint replacements, is driven by an aging population and improved diagnosis of joint conditions. Orthopedic surgeries carry a risk of infection, especially in patients with comorbidities. The rise of antibiotic resistance exacerbates this issue, necessitating alternatives like bioengineered antimicrobial peptides (AMPs), offering broad-spectrum activity and multiple action mechanisms. This review aimed to assess the prevalence of antimicrobial potential and the yield after purification among recombinant AMP families. The antimicrobial potential was evaluated using the Minimum Inhibitory Concentration (MIC) values against the most common bacteria involved in clinical infections. This systematic review adhered to PRISMA guidelines, focusing on studies of recombinant AMPs. The search strategy was run on PubMed, Scopus and Embase up to 30 March 2023. The Population, Exposure and Outcome model was used to extract the data from studies and ToxRTool for the risk of bias analysis. This review included studies providing peptide production yield data and MIC values against pathogenic bacteria. Non-English texts, reviews, conference abstracts, books, studies focusing solely on chemical synthesis, those reporting incomplete data sets, using non-standard MIC assessment methods, or presenting MIC values as ranges rather than precise concentrations, were excluded. From 370 publications, 34 studies on AMPs were analyzed. These covered 46 AMPs across 18 families, with Defensins and Hepcidins being most common. Yields varied from 0.5 to 2,700 mg/L. AMPs were tested against 23 bacterial genera, with MIC values ranging from 0.125 to >1,152 μg/mL. Arenicins showed the highest antimicrobial activity, particularly against common orthopedic infection pathogens. However, AMP production yields varied and some AMPs demonstrated limited effectiveness against certain bacterial strains. This systematic review emphasizes the critical role of bioengineered AMPs to cope infections and antibiotic resistance. It meticulously evaluates recombinant AMPs, focusing on their antimicrobial efficacy and production yields. The review highlights that, despite the variability in AMP yields and effectiveness, Arenicins and Defensins are promising candidates for future research and clinical applications in treating antibiotic-resistant orthopedic infections. This study contributes significantly to the understanding of AMPs in healthcare, underscoring their potential in addressing the growing challenge of antibiotic resistance. https://osf.io/2uq4c/.

Keywords

References

  1. Clin Microbiol Rev. 2006 Jul;19(3):491-511 [PMID: 16847082]
  2. Biochem Biophys Res Commun. 2012 Dec 7;429(1-2):63-9 [PMID: 23137541]
  3. Front Microbiol. 2014 Feb 19;5:63 [PMID: 24600443]
  4. Antimicrob Agents Chemother. 1999 Jun;43(6):1317-23 [PMID: 10348745]
  5. Chem Soc Rev. 2012 Mar 7;41(5):1826-44 [PMID: 22012213]
  6. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160603]
  7. Biotechnol Appl Biochem. 2009 Jul 06;54(1):1-9 [PMID: 19575694]
  8. Adv Sci (Weinh). 2023 Apr;10(11):e2206602 [PMID: 36722732]
  9. Front Cell Infect Microbiol. 2023 Jan 05;12:1056912 [PMID: 36683682]
  10. J Biotechnol. 2015 Feb 10;195:89-92 [PMID: 25562424]
  11. Biochim Biophys Acta. 2016 May;1858(5):1012-23 [PMID: 26724205]
  12. Arthroplast Today. 2020 Dec 22;6(4):998-1000 [PMID: 33385041]
  13. JB JS Open Access. 2023 Feb 28;8(1): [PMID: 36864906]
  14. Front Immunol. 2015 Jan 22;6:2 [PMID: 25657649]
  15. Pharmaceuticals (Basel). 2021 May 17;14(5): [PMID: 34067510]
  16. Mar Drugs. 2016 Aug 09;14(8): [PMID: 27517939]
  17. Mol Cell Biochem. 2001 Feb;218(1-2):105-11 [PMID: 11330824]
  18. Chem Biol Drug Des. 2011 Jan;77(1):48-56 [PMID: 20942839]
  19. Protein Expr Purif. 2018 Mar;143:38-44 [PMID: 29066154]
  20. JAC Antimicrob Resist. 2022 Mar 18;4(2):dlac016 [PMID: 35310572]
  21. Biotechnol Appl Biochem. 2007 May;47(Pt 1):1-9 [PMID: 17432953]
  22. Semin Immunopathol. 2007 Apr;29(1):27-43 [PMID: 17621952]
  23. Healthcare (Basel). 2023 Jul 05;11(13): [PMID: 37444780]
  24. Int Immunopharmacol. 2016 Oct;39:181-191 [PMID: 27487204]
  25. Prep Biochem Biotechnol. 2019;49(5):427-434 [PMID: 30861356]
  26. Exp Ther Med. 2016 Oct;12(4):2324-2330 [PMID: 27698732]
  27. BMC Bioinformatics. 2021 May 11;22(1):239 [PMID: 33975547]
  28. J Pept Sci. 2011 May;17(5):298-305 [PMID: 21480436]
  29. J Biol Chem. 2014 Dec 12;289(50):34953-64 [PMID: 25342741]
  30. Proc Natl Acad Sci U S A. 2021 May 25;118(21): [PMID: 34021080]
  31. Prog Biophys Mol Biol. 2019 Mar;142:10-22 [PMID: 30125585]
  32. Cell Chem Biol. 2018 May 17;25(5):530-539.e7 [PMID: 29526712]
  33. Methods Protoc. 2019 Mar 12;2(1): [PMID: 31164605]
  34. Molecules. 2015 Aug 14;20(8):14889-901 [PMID: 26287145]
  35. J Microbiol Biotechnol. 2015 Jul;25(7):1007-14 [PMID: 25791854]
  36. Biotechnol Appl Biochem. 2022 Oct;69(5):1998-2007 [PMID: 34586650]
  37. Biotechnol Lett. 2020 Sep;42(9):1673-1682 [PMID: 32418030]
  38. Biopolymers. 2010;94(6):701-10 [PMID: 20564036]
  39. Toxicol Lett. 2009 Sep 10;189(2):138-44 [PMID: 19477248]
  40. Cell Mol Life Sci. 2006 Dec;63(24):3072-82 [PMID: 17131057]
  41. J Pept Res. 2004 Feb;63(2):69-84 [PMID: 15009528]
  42. Curr Biol. 2016 Jan 11;26(1):R14-9 [PMID: 26766224]
  43. Biotechnol Prog. 2015 Mar-Apr;31(2):369-74 [PMID: 25641948]
  44. Fish Shellfish Immunol. 2020 Mar;98:414-419 [PMID: 31962148]
  45. Curr Pharm Des. 2010 May;16(15):1656-65 [PMID: 20222857]
  46. Protein J. 2011 Jan;30(1):32-8 [PMID: 21210197]
  47. J Biotechnol. 2007 Jan 20;127(4):605-14 [PMID: 16987562]
  48. Biochem Biophys Res Commun. 2017 Jan 22;482(4):1320-1326 [PMID: 27940358]
  49. Protein Expr Purif. 2010 Mar;70(1):109-15 [PMID: 19766724]
  50. Macromol Rapid Commun. 2013 Jan 11;34(1):74-80 [PMID: 23112127]
  51. Protein Pept Lett. 2008;15(9):985-94 [PMID: 18991776]
  52. Protein Expr Purif. 2008 Sep;61(1):36-44 [PMID: 18595734]
  53. J Ind Microbiol Biotechnol. 2014 Mar;41(3):527-34 [PMID: 24281395]
  54. Lett Appl Microbiol. 2018 Dec;67(6):606-613 [PMID: 30267582]
  55. J Arthroplasty. 2007 Aug;22(5):651-6 [PMID: 17689771]
  56. Antimicrob Agents Chemother. 2016 Jan 04;60(3):1717-24 [PMID: 26729502]
  57. Curr Top Med Chem. 2016;16(1):25-39 [PMID: 26139112]
  58. Biochemistry. 2000 Nov 21;39(46):14150-9 [PMID: 11087363]
  59. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  60. Molecules. 2017 May 31;22(6): [PMID: 28561787]
  61. Appl Microbiol Biotechnol. 2006 May;70(6):698-704 [PMID: 16158282]
  62. Molecules. 2017 Nov 14;22(11): [PMID: 29135962]
  63. Front Microbiol. 2019 Nov 26;10:2534 [PMID: 31849846]
  64. Biosci Biotechnol Biochem. 2013;77(1):103-10 [PMID: 23291752]
  65. Sci Rep. 2020 Jul 22;10(1):12164 [PMID: 32699335]
  66. Pharmaceuticals (Basel). 2013 Nov 28;6(12):1543-75 [PMID: 24287494]
  67. Diagn Microbiol Infect Dis. 2019 Feb;93(2):125-130 [PMID: 30266398]
  68. Protein Expr Purif. 2016 Mar;119:85-93 [PMID: 26586613]
  69. Front Bioeng Biotechnol. 2019 Oct 11;7:248 [PMID: 31681738]
  70. J Theor Biol. 2017 Apr 21;419:254-265 [PMID: 28216428]
  71. Phytochemistry. 2018 Oct;154:94-105 [PMID: 30031244]
  72. Protein Expr Purif. 2013 May;89(1):51-5 [PMID: 23473826]
  73. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  74. Biomolecules. 2018 Jan 19;8(1): [PMID: 29351202]
  75. Lett Appl Microbiol. 2014 Jul;59(1):71-8 [PMID: 24617894]
  76. Dev Comp Immunol. 2015 Nov;53(1):47-54 [PMID: 26123888]
  77. Protein Expr Purif. 2005 Feb;39(2):144-51 [PMID: 15642464]
  78. Recent Pat Inflamm Allergy Drug Discov. 2008 Jan;2(1):58-63 [PMID: 19075992]

Word Cloud

Created with Highcharts 10.0.0AMPsantimicrobialrevieworthopedicrecombinantMICstudiesantibioticresistancevaluesinfectionspeptidespotentialyieldAMPcommonsystematicfocusingdataproductionyieldssurgeriesjointriskinfectionbioengineeredactivityfamiliesusingbacteriaclinicalDefensinsvaried0bacterialArenicinseffectivenessincreasingdemandincludingreplacementsdrivenagingpopulationimproveddiagnosisconditionsOrthopediccarryespeciallypatientscomorbiditiesriseexacerbatesissuenecessitatingalternativeslikeofferingbroad-spectrummultipleactionmechanismsaimedassessprevalencepurificationamongevaluatedMinimumInhibitoryConcentrationinvolvedadheredPRISMAguidelinessearchstrategyrunPubMedScopusEmbase30March2023PopulationExposureOutcomemodelusedextractToxRToolbiasanalysisincludedprovidingpeptidepathogenicNon-Englishtextsreviewsconferenceabstractsbookssolelychemicalsynthesisreportingincompletesetsnon-standardassessmentmethodspresentingrangesratherpreciseconcentrationsexcluded370publications34analyzedcovered46across18HepcidinsYields52700 mg/Ltested23generaranging125>1152 μg/mLshowedhighestparticularlypathogensHoweverdemonstratedlimitedcertainstrainsemphasizescriticalrolecopemeticulouslyevaluatesefficacyhighlightsdespitevariabilitypromisingcandidatesfutureresearchapplicationstreatingantibiotic-resistantstudycontributessignificantlyunderstandinghealthcareunderscoringaddressinggrowingchallengehttps://osfio/2uq4c/Revolutionizinghealthcare:unveilingminimuminhibitoryconcentration

Similar Articles

Cited By