A prediction model based on digital breast pathology image information.

Guoxin Sun, Liying Cai, Xiong Yan, Weihong Nie, Xin Liu, Jing Xu, Xiao Zou
Author Information
  1. Guoxin Sun: School of Clinical Medicine, Qingdao University, Qingdao, China. ORCID
  2. Liying Cai: College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan City, China.
  3. Xiong Yan: Department of Pathology, Qingdao Central Hospital, Qingdao, China.
  4. Weihong Nie: School of Clinical Medicine, Qingdao University, Qingdao, China.
  5. Xin Liu: School of Clinical Medicine, Qingdao University, Qingdao, China.
  6. Jing Xu: Department of Pathology, Qingdao Central Hospital, Qingdao, China.
  7. Xiao Zou: Department of Breast Surgery, Xiangdong Hospital Affiliated to Hunan Normal University, Hunan, China.

Abstract

BACKGROUND: The workload of breast cancer pathological diagnosis is very heavy. The purpose of this study is to establish a nomogram model based on pathological images to predict the benign and malignant nature of breast diseases and to validate its predictive performance.
METHODS: In retrospect, a total of 2,723 H&E-stained pathological images were collected from 1,474 patients at Qingdao Central Hospital between 2019 and 2022. The dataset consisted of 509 benign tumor images (adenosis and fibroadenoma) and 2,214 malignant tumor images (infiltrating ductal carcinoma). The images were divided into a training set (1,907) and a validation set (816). Python3.7 was used to extract the values of the R channel, G channel, B channel, and one-dimensional information entropy from all images. Multivariable logistic regression was used to select variables and establish the breast tissue pathological image prediction model.
RESULTS: The R channel value, B channel value, and one-dimensional information entropy of the images were identified as independent predictive factors for the classification of benign and malignant pathological images (P < 0.05). The area under the curve (AUC) of the nomogram model in the training set was 0.889 (95% CI: 0.869, 0.909), and the AUC in the validation set was 0.838 (95% CI: 0.7980.877). The calibration curve results showed that the calibration curve of this nomogram model was close to the ideal curve. The decision curve results indicated that the predictive model curve had a high value for auxiliary diagnosis.
CONCLUSION: The nomogram model for the prediction of benign and malignant breast diseases based on pathological images demonstrates good predictive performance. This model can assist in the diagnosis of breast tissue pathological images.

References

  1. Nat Med. 2018 Oct;24(10):1559-1567 [PMID: 30224757]
  2. Front Oncol. 2021 Mar 11;11:576007 [PMID: 33777733]
  3. Comput Methods Programs Biomed. 2022 Dec;227:107205 [PMID: 36384061]
  4. Nat Rev Cancer. 2018 Aug;18(8):500-510 [PMID: 29777175]
  5. EBioMedicine. 2021 Nov;73:103631 [PMID: 34678610]
  6. J Intern Med. 2020 Jul;288(1):62-81 [PMID: 32128929]
  7. Nat Mach Intell. 2022 Apr;4(4):401-412 [PMID: 36118303]
  8. Cancers (Basel). 2023 Feb 05;15(4): [PMID: 36831359]
  9. Am J Pathol. 2019 Sep;189(9):1686-1698 [PMID: 31199919]
  10. J Pers Med. 2022 Sep 01;12(9): [PMID: 36143229]
  11. PET Clin. 2021 Oct;16(4):553-576 [PMID: 34537130]
  12. Artif Intell. 2022 Mar;3(1):211-228 [PMID: 35845102]
  13. Transl Res. 2018 Apr;194:19-35 [PMID: 29175265]
  14. Cancer Discov. 2021 Apr;11(4):900-915 [PMID: 33811123]
  15. Int J Surg Pathol. 2014 Feb;22(1):12-32 [PMID: 24406626]
  16. J R Soc Interface. 2018 Apr;15(141): [PMID: 29618526]
  17. Cancer Commun (Lond). 2020 Apr;40(4):154-166 [PMID: 32277744]
  18. Eur J Radiol. 2021 Jun;139:109717 [PMID: 33962110]
  19. J Pathol Inform. 2022 Sep 24;13:100145 [PMID: 36268060]
  20. J Med Imaging (Bellingham). 2017 Oct;4(4):044504 [PMID: 29285517]
  21. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  22. Cancers (Basel). 2022 Apr 25;14(9): [PMID: 35565261]
  23. JAMA. 2017 Dec 12;318(22):2199-2210 [PMID: 29234806]
  24. Mod Pathol. 2022 Jan;35(1):23-32 [PMID: 34611303]
  25. Talanta. 2022 May 1;241:123244 [PMID: 35121545]
  26. Comput Biol Med. 2021 Sep;136:104730 [PMID: 34375901]
  27. Metabolism. 2017 Apr;69S:S36-S40 [PMID: 28126242]

MeSH Term

Humans
Female
Breast Neoplasms
Middle Aged
Adult
Nomograms
Fibroadenoma
Retrospective Studies
Breast
Aged

Word Cloud

Created with Highcharts 10.0.0imagesmodelpathologicalbreast0curvechannelnomogrambenignmalignantpredictivesetdiagnosisbasedinformationpredictionvalueestablishdiseasesperformance21tumortrainingvalidationusedRBone-dimensionalentropytissueimageAUC95%CI:calibrationresultsBACKGROUND:workloadcancerheavypurposestudypredictnaturevalidateMETHODS:retrospecttotal723H&E-stainedcollected474patientsQingdaoCentralHospital20192022datasetconsisted509adenosisfibroadenoma214infiltratingductalcarcinomadivided907816Python37extractvaluesGMultivariablelogisticregressionselectvariablesRESULTS:identifiedindependentfactorsclassificationP<05area8898699098387980877showedcloseidealdecisionindicatedhighauxiliaryCONCLUSION:demonstratesgoodcanassistdigitalpathology

Similar Articles

Cited By