The matrisome landscape controlling in vivo germ cell fates.

Aqilah Amran, Lara Pigatto, Johanna Farley, Rasoul Godini, Roger Pocock, Sandeep Gopal
Author Information
  1. Aqilah Amran: Department of Experimental Medical Science, Lund University, Lund, Sweden.
  2. Lara Pigatto: Department of Experimental Medical Science, Lund University, Lund, Sweden.
  3. Johanna Farley: Department of Experimental Medical Science, Lund University, Lund, Sweden. ORCID
  4. Rasoul Godini: Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.
  5. Roger Pocock: Development and Stem Cells Program, Monash Biomedicine Discovery Institute. Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia. roger.pocock@monash.edu. ORCID
  6. Sandeep Gopal: Department of Experimental Medical Science, Lund University, Lund, Sweden. sandeep.gopal@med.lu.se. ORCID

Abstract

The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.

References

  1. Dev Biol. 2018 Oct 1;442(1):173-187 [PMID: 30030982]
  2. Nature. 2000 Nov 16;408(6810):325-30 [PMID: 11099033]
  3. FEBS Lett. 2005 Jan 17;579(2):549-53 [PMID: 15642374]
  4. Nucleic Acids Res. 2022 Jan 7;50(D1):D687-D692 [PMID: 34788843]
  5. Nat Commun. 2021 Nov 18;12(1):6708 [PMID: 34795288]
  6. Development. 2005 Oct;132(20):4621-33 [PMID: 16176946]
  7. Dev Biol. 2017 Dec 15;432(2):222-228 [PMID: 29079422]
  8. Dev Biol. 2009 Oct 1;334(1):235-42 [PMID: 19631636]
  9. J Cell Sci. 2018 May 1;131(9): [PMID: 29717004]
  10. Cell. 2011 Apr 29;145(3):470-82 [PMID: 21529718]
  11. Cell Signal. 2021 Aug;84:110006 [PMID: 33857577]
  12. Trends Cell Biol. 2022 Sep;32(9):773-785 [PMID: 35491306]
  13. Mol Cell Proteomics. 2012 Apr;11(4):M111.014647 [PMID: 22159717]
  14. Development. 2000 Dec;127(24):5475-85 [PMID: 11076767]
  15. Dev Dyn. 2010 May;239(5):1539-54 [PMID: 20419785]
  16. J Cell Sci. 2006 Dec 1;119(Pt 23):4811-8 [PMID: 17090602]
  17. Dev Biol. 2003 Apr 1;256(1):173-86 [PMID: 12654300]
  18. Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52 [PMID: 25352553]
  19. Nat Rev Mol Cell Biol. 2001 Nov;2(11):793-805 [PMID: 11715046]
  20. Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205 [PMID: 31114916]
  21. Neuroscience. 2005;130(1):51-60 [PMID: 15561424]
  22. Development. 1994 Oct;120(10):2901-11 [PMID: 7607080]
  23. Adv Drug Deliv Rev. 2016 Feb 1;97:4-27 [PMID: 26562801]
  24. Development. 2009 May;136(9):1433-42 [PMID: 19297413]
  25. Genetics. 2004 Sep;168(1):147-60 [PMID: 15454534]
  26. Semin Cell Dev Biol. 2017 Nov;71:75-83 [PMID: 28754442]
  27. Cell. 2010 Oct 15;143(2):299-312 [PMID: 20946987]
  28. Dev Cell. 2015 Nov 23;35(4):405-17 [PMID: 26609956]
  29. Dev Dyn. 2007 Dec;236(12):3343-57 [PMID: 17948315]
  30. Matrix Biol Plus. 2019 Feb 21;1:100001 [PMID: 33543001]
  31. Curr Biol. 2011 Jan 25;21(2):114-9 [PMID: 21215633]
  32. MicroPubl Biol. 2020 Jun 22;2020: [PMID: 32626848]
  33. WormBook. 2005 Aug 15;:1-14 [PMID: 18050413]
  34. Signal Transduct Target Ther. 2022 Oct 2;7(1):345 [PMID: 36184610]
  35. Genetics. 2018 Oct;210(2):587-605 [PMID: 30093412]
  36. Elife. 2022 Sep 13;11: [PMID: 36098634]
  37. Int J Biol Macromol. 2023 Mar 31;232:123426 [PMID: 36708893]
  38. Mol Biol Cell. 2006 Jul;17(7):3051-61 [PMID: 16672375]
  39. Annu Rev Cell Dev Biol. 2007;23:405-33 [PMID: 17506698]
  40. Cell. 1998 Oct 30;95(3):365-77 [PMID: 9814707]
  41. Biochim Biophys Acta. 2014 Aug;1840(8):2506-19 [PMID: 24418517]
  42. Biol Open. 2023 Aug 15;12(8): [PMID: 37531197]
  43. Histochem Cell Biol. 2004 Feb;121(2):149-53 [PMID: 14758483]
  44. Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20804-9 [PMID: 19104038]
  45. Mol Biol Cell. 2009 Feb;20(4):1252-67 [PMID: 19109417]
  46. BMC Bioinformatics. 2017 Mar 2;18(1):142 [PMID: 28249561]
  47. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  48. Cell. 2006 Aug 25;126(4):677-89 [PMID: 16923388]
  49. Cell Death Dis. 2015 Sep 24;6:e1891 [PMID: 26402517]
  50. Cell Commun Adhes. 2010 Apr;17(2):48-54 [PMID: 20560867]
  51. Exp Parasitol. 1996 Jan;82(1):11-20 [PMID: 8617326]
  52. Development. 2001 Mar;128(6):883-94 [PMID: 11222143]
  53. J Cell Biol. 2014 Jul 7;206(1):129-43 [PMID: 24982432]
  54. Curr Opin Struct Biol. 2015 Oct;34:26-34 [PMID: 26163333]
  55. Curr Biol. 2017 Sep 25;27(18):2878-2886.e5 [PMID: 28918945]
  56. Bioinformatics. 2009 Nov 15;25(22):3045-6 [PMID: 19744993]
  57. PLoS Genet. 2018 Jul 19;14(7):e1007417 [PMID: 30024879]
  58. Development. 2023 Aug 15;150(16): [PMID: 37497562]
  59. J Cell Biol. 1997 Jul 28;138(2):471-80 [PMID: 9230086]
  60. PLoS One. 2014 Feb 19;9(2):e88372 [PMID: 24586318]
  61. J Cell Physiol. 2008 Nov;217(2):450-8 [PMID: 18613064]
  62. WormBook. 2005 Sep 01;:1-4 [PMID: 18050415]
  63. Gene. 2001 Jan 24;263(1-2):103-12 [PMID: 11223248]
  64. Dev Biol. 2006 Feb 1;290(1):211-9 [PMID: 16376872]
  65. Curr Biol. 2012 Apr 24;22(8):712-9 [PMID: 22483938]
  66. PLoS Pathog. 2021 Apr 1;17(4):e1009454 [PMID: 33793670]
  67. Science. 2004 Jul 2;305(5680):61-6 [PMID: 15166316]
  68. Genetics. 2014 Dec;198(4):1513-33 [PMID: 25261697]
  69. Cell. 1987 Nov 20;51(4):589-99 [PMID: 3677168]
  70. Biochim Biophys Acta. 2010 Jan;1803(1):55-71 [PMID: 20080133]
  71. Development. 1999 Feb;126(5):1011-22 [PMID: 9927601]
  72. FEBS J. 2017 Feb;284(3):362-375 [PMID: 27634578]
  73. Dev Cell. 2020 Jul 6;54(1):60-74.e7 [PMID: 32585132]
  74. Nature. 1991 Jan 24;349(6307):346-8 [PMID: 1702880]
  75. Elife. 2015 Nov 09;4: [PMID: 26551561]
  76. Cell Tissue Res. 2010 Jan;339(1):31-46 [PMID: 19597846]
  77. Cancer Res. 2002 Jun 1;62(11):3233-43 [PMID: 12036939]
  78. Molecules. 2018 Mar 22;23(4): [PMID: 29565818]
  79. Tissue Barriers. 2023 Jul 3;11(3):2110798 [PMID: 35959954]

Grants

  1. 2019-02020/Vetenskapsr��det (Swedish Research Council)
  2. 22 2125 Pj/Cancerfonden (Swedish Cancer Society)
  3. N/A/Franke och Margareta Bergqvists Stiftelse f��r Fr��mjande av Cancerforskning
  4. 20200545/Crafoordska Stiftelsen (Crafoord Foundation)
  5. N/A/Kungliga Fysiografiska S��llskapet i Lund (Royal Physiographic Society in Lund)
  6. DE190100174/Department of Education and Training | Australian Research Council (ARC)
  7. DP200103293/Department of Education and Training | Australian Research Council (ARC)
  8. GNT1161439/Department of Health | National Health and Medical Research Council (NHMRC)
  9. GNT1105374/Department of Health | National Health and Medical Research Council (NHMRC)
  10. GNT1137645/Department of Health | National Health and Medical Research Council (NHMRC)
  11. 2018825/Department of Health | National Health and Medical Research Council (NHMRC)

MeSH Term

Animals
Caenorhabditis elegans
Extracellular Matrix
Germ Cells
Cell Differentiation
Caenorhabditis elegans Proteins
Gene Expression Regulation, Developmental
Signal Transduction
Cell Lineage
Oocytes

Word Cloud

Created with Highcharts 10.0.0matrisomecelldevelopmentgermcellsfactorsextracellularanalysiscellularcomprehensivecontrolvivogenesbehaviorlandscapefatesdevelopmentalfateregulatedintrinsicenvironmentmatrixdeliverschemicalmechanicalcuescanmodifyHoweverunderstandinglackingshowspecificactindividuallycollectivelySurveyingundifferentiatedgermlinestemmatureoocytesCaenorhabditiseleganslineenabledholisticfunctional443conservedmatrisome-codingUsinghigh-contentimaging3Dreconstructionidentify321impactmajority>80%undescribedidentifieskeynetworksactingautonomouslynon-autonomouslycoordinateresultsdemonstraterequirescontinualremodelingTogetherstudyprovidesplatformdecipheringsignalingcontrolsanticipatewillestablishnewopportunitiesmanipulatingcontrolling

Similar Articles

Cited By (1)