Ecological risk of metals in Andean water resources: A framework for early environmental assessment of mining projects in Peru.

Simón B Moreno-Aguirre, Jacinto J Vértiz-Osores, Christian E Paredes-Espinal, Enrique Meseth, Guillermo L Vílchez-Ochoa, Jessica A Espino-Ciudad, Lisveth Flores Del Pino
Author Information
  1. Simón B Moreno-Aguirre: Master's Program in Water Resources, Universidad Nacional Agraria La Molina, UNALM, Lima, Peru.
  2. Jacinto J Vértiz-Osores: Faculty of Engineering and Management, Universidad Nacional Tecnológica de Lima Sur, Villa El Salvador, 15834, Lima, Peru.
  3. Christian E Paredes-Espinal: Technical Operations Functional Unit (OTEC), Organismo de Evaluación y Fiscalización Ambiental (OEFA), Lima, Peru.
  4. Enrique Meseth: Doctoral Program in Water Resources, Universidad Nacional Agraria La Molina, UNALM, Lima, Peru.
  5. Guillermo L Vílchez-Ochoa: Faculty of Engineering and Management, Universidad Nacional Tecnológica de Lima Sur, Villa El Salvador, 15834, Lima, Peru.
  6. Jessica A Espino-Ciudad: Technical Operations Functional Unit (OTEC), Organismo de Evaluación y Fiscalización Ambiental (OEFA), Lima, Peru.
  7. Lisveth Flores Del Pino: Center for Research in Environmental Chemistry, Toxicology, and Biotechnology, Universidad Nacional Agraria La Molina, Lima, 15024, Peru.

Abstract

Metallic contaminants in Andean water resources influenced by mining activities poses risks to aquatic ecosystems and a challenge to regulatory agencies responsible for environmental compliance. In this study, the Ecological Risk Assessment (ERA) framework was adapted to assess dissolved heavy metal concentrations at 283 surface water monitoring stations near to six mining projects during the dry and wet seasons. Reports from OEFA-Peru on Early Environmental Assessment (EEA) were used to apply various criteria and non-parametric statistical tests. They included ecological, ecotoxicological, chemical, and regulatory factors. The main goal of this research was to identify, analyze, characterize, and compare the risks present at different trophic levels. These levels were categorized as T1 (Microalgae), T2 (Zooplankton and Benthic invertebrates), and T3 (Fish). Individual risk (IR) was estimated using the quotient model, while total risk (TR) was assessed using the additive probability rule. Rainbow trout (), representing trophic level T3, showed the highest sensitivity to Fe and Cu. Statistical tests ranked the IR as Fe > Cu > Zn > Mn > Pb (p < 0.01). The TR was more prevalent during the wet season compared to the dry season (p < 0.01). Notably, around 50 % of the monitoring stations (n = 142) were classified as high risk, and 9 % (n = 13) showed extremely high-risk values for Cu and Fe. The adapted ERA framework demonstrated great effectiveness in identifying critical points of metal contamination in high Andean aquatic ecosystems under mining influence. However, specialized studies are suggested that allow the sources of pollution to be associated with specific regulatory actions.

Keywords

References

  1. Sci Total Environ. 2023 Feb 10;859(Pt 1):160179 [PMID: 36395849]
  2. Environ Pollut. 2023 Jun 1;326:121470 [PMID: 36965680]
  3. Environ Toxicol Chem. 2022 Jun;41(6):1520-1539 [PMID: 35262228]
  4. Ecotoxicol Environ Saf. 2019 Nov 15;183:109483 [PMID: 31362159]
  5. Water Sci Technol. 2009;59(11):2167-78 [PMID: 19494456]
  6. J Environ Biol. 2010 Sep;31(5):595-601 [PMID: 21387908]
  7. Sci Rep. 2022 Aug 23;12(1):14393 [PMID: 35999241]
  8. Talanta. 2006 Apr 15;69(2):334-42 [PMID: 18970571]
  9. Environ Sci Technol. 2012 Sep 4;46(17):9324-32 [PMID: 22897340]
  10. Environ Res. 2023 Oct 15;235:116695 [PMID: 37467945]
  11. Environ Health. 2012 Jun 28;11 Suppl 1:S18 [PMID: 22759500]
  12. Environ Pollut. 2019 May;248:133-144 [PMID: 30784832]
  13. Ecotoxicol Environ Saf. 2021 Jun 1;215:112141 [PMID: 33740491]
  14. Heliyon. 2021 Dec 17;7(12):e08625 [PMID: 34988319]
  15. Environ Pollut. 2021 Dec 1;290:117971 [PMID: 34438170]
  16. Environ Pollut. 2020 Oct;265(Pt A):115059 [PMID: 32806429]
  17. Sci Rep. 2021 Nov 23;11(1):22729 [PMID: 34815466]
  18. Int J Environ Res Public Health. 2022 Dec 27;20(1): [PMID: 36612759]
  19. Int J Environ Res Public Health. 2022 Nov 08;19(22): [PMID: 36429366]
  20. Ecotoxicol Environ Saf. 2007 Oct;68(2):145-227 [PMID: 17889701]
  21. Int J Environ Res Public Health. 2017 Jul 31;14(8): [PMID: 28788105]
  22. Ecotoxicol Environ Saf. 2012 Mar;77:57-63 [PMID: 22062152]

Word Cloud

Created with Highcharts 10.0.0riskAndeanwaterminingregulatoryEcologicalframeworkmetallevelsresourcesrisksaquaticecosystemsenvironmentalAssessmentERAadaptedmonitoringstationsprojectsdrywetteststrophicT3IRusingTRshowedFeCup < 001seasonhighassessmentMetalliccontaminantsinfluencedactivitiesposeschallengeagenciesresponsiblecompliancestudyRiskassessdissolvedheavyconcentrations283surfacenearsixseasonsReportsOEFA-PeruEarlyEnvironmentalEEAusedapplyvariouscriterianon-parametricstatisticalincludedecologicalecotoxicologicalchemicalfactorsmaingoalresearchidentifyanalyzecharacterizecomparepresentdifferentcategorizedT1MicroalgaeT2ZooplanktonBenthicinvertebratesFishIndividualestimatedquotientmodeltotalassessedadditiveprobabilityruleRainbowtroutrepresentinglevelhighestsensitivityStatisticalrankedFe > Cu > Zn > Mn > PbprevalentcomparedNotablyaround50 %n = 142classified9 %n = 13extremelyhigh-riskvaluesdemonstratedgreateffectivenessidentifyingcriticalpointscontaminationinfluenceHoweverspecializedstudiessuggestedallowsourcespollutionassociatedspecificactionsmetalsresources:earlyPeruHeavyMiningTrophic

Similar Articles

Cited By