Neural mechanisms of resource allocation in working memory.

Hsin-Hung Li, Thomas C Sprague, Aspen H Yoo, Wei Ji Ma, Clayton E Curtis
Author Information
  1. Hsin-Hung Li: Department of Psychology, New York University, New York, NY 10003, USA. ORCID
  2. Thomas C Sprague: Department of Psychology, New York University, New York, NY 10003, USA. ORCID
  3. Aspen H Yoo: Department of Psychology, New York University, New York, NY 10003, USA.
  4. Wei Ji Ma: Department of Psychology, New York University, New York, NY 10003, USA.
  5. Clayton E Curtis: Department of Psychology, New York University, New York, NY 10003, USA.

Abstract

To mitigate capacity limits of working memory, people allocate resources according to an item's relevance. However, the neural mechanisms supporting such a critical operation remain unknown. Here, we developed computational neuroimaging methods to decode and demix neural responses associated with multiple items in working memory with different priorities. In striate and extrastriate cortex, the gain of neural responses tracked the priority of memoranda. Higher-priority memoranda were decoded with smaller error and lower uncertainty. Moreover, these neural differences predicted behavioral differences in memory prioritization. Remarkably, trialwise variability in the magnitude of delay activity in frontal cortex predicted differences in decoded precision between low and high-priority items in visual cortex. These results suggest a model in which feedback signals broadcast from frontal cortex sculpt the gain of memory representations in visual cortex according to behavioral relevance, thus, identifying a neural mechanism for resource allocation.

References

  1. Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9454-9 [PMID: 26170314]
  2. J Exp Psychol Hum Percept Perform. 2017 Oct;43(10):1843-1854 [PMID: 28967787]
  3. Trends Cogn Sci. 2017 Feb;21(2):111-124 [PMID: 28063661]
  4. Elife. 2016 Oct 27;5: [PMID: 27787198]
  5. J Exp Psychol Learn Mem Cogn. 2017 Apr;43(4):660-668 [PMID: 27685022]
  6. Vision Res. 2014 Dec;105:70-6 [PMID: 25240420]
  7. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3314-9 [PMID: 10077681]
  8. Neuron. 2021 Nov 17;109(22):3699-3712.e6 [PMID: 34525327]
  9. Cereb Cortex. 2008 Jun;18(6):1384-94 [PMID: 17921456]
  10. Trends Cogn Sci. 2013 Aug;17(8):391-400 [PMID: 23850263]
  11. J Vis. 2012 Dec 21;12(13):21 [PMID: 23262153]
  12. J Vis. 2009 Sep 09;9(10):7.1-11 [PMID: 19810788]
  13. J Neurophysiol. 2013 Jul;110(2):481-94 [PMID: 23615546]
  14. Neuron. 2011 Dec 8;72(5):832-46 [PMID: 22153378]
  15. Elife. 2022 Apr 07;11: [PMID: 35389340]
  16. Neuroimage. 2015 Feb 1;106:414-27 [PMID: 25463449]
  17. Nat Commun. 2021 Jan 15;12(1):360 [PMID: 33452252]
  18. PLoS Biol. 2020 Nov 6;18(11):e3000921 [PMID: 33156829]
  19. Nat Neurosci. 2020 Jan;23(1):122-129 [PMID: 31873286]
  20. Nat Rev Neurosci. 2002 Mar;3(3):201-15 [PMID: 11994752]
  21. Psychol Sci. 2004 Feb;15(2):106-11 [PMID: 14738517]
  22. Science. 2008 Aug 8;321(5890):851-4 [PMID: 18687968]
  23. Elife. 2017 Feb 22;6: [PMID: 28226243]
  24. Trends Cogn Sci. 2020 Jun;24(6):466-480 [PMID: 32331857]
  25. Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):11090-11095 [PMID: 30297430]
  26. J Neurosci. 2022 Sep 14;42(37):7110-7120 [PMID: 35927036]
  27. Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8391-8397 [PMID: 32229572]
  28. Nature. 2002 Oct 10;419(6907):616-20 [PMID: 12374979]
  29. J Neurosci. 2005 Nov 23;25(47):11023-33 [PMID: 16306415]
  30. Nat Hum Behav. 2022 Feb;6(2):294-305 [PMID: 35058641]
  31. J Neurosci. 2018 Oct 3;38(40):8538-8548 [PMID: 30126971]
  32. J Exp Psychol Hum Percept Perform. 2017 Jul;43(7):1454-1465 [PMID: 28368161]
  33. Science. 2009 May 8;324(5928):759-64 [PMID: 19423820]
  34. J Cogn Neurosci. 2022 Jan 5;34(2):365-379 [PMID: 34942647]
  35. Neuroimage. 2008 Jan 15;39(2):647-60 [PMID: 17977024]
  36. Cereb Cortex. 2015 Oct;25(10):3911-31 [PMID: 25452571]
  37. J Neurosci. 2019 Oct 9;39(41):8164-8176 [PMID: 31481435]
  38. Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23797-23805 [PMID: 31685625]
  39. Nat Neurosci. 2015 Dec;18(12):1728-30 [PMID: 26502262]
  40. Neuron. 2014 Oct 22;84(2):355-62 [PMID: 25374359]
  41. J Neurosci. 2014 Mar 5;34(10):3632-45 [PMID: 24599462]
  42. Front Neural Circuits. 2021 Jul 21;15:696060 [PMID: 34366794]
  43. Nature. 1996 Aug 8;382(6591):539-41 [PMID: 8700227]
  44. J Vis. 2004 Dec 29;4(12):1120-35 [PMID: 15669916]
  45. Nat Neurosci. 2013 Dec;16(12):1879-87 [PMID: 24212672]
  46. Cogn Psychol. 2017 Sep;97:79-97 [PMID: 28734172]
  47. Curr Res Neurobiol. 2022 Apr 12;3:100038 [PMID: 36685758]
  48. Elife. 2017 Jun 19;6: [PMID: 28628004]
  49. Nat Commun. 2012;3:1229 [PMID: 23187629]
  50. J Neurosci. 2025 Jan 27;: [PMID: 39870527]
  51. Science. 2009 May 29;324(5931):1207-10 [PMID: 19478185]
  52. Sci Rep. 2018 Nov 1;8(1):16162 [PMID: 30385803]
  53. J Neurosci. 2024 Jul 10;44(28): [PMID: 38769009]
  54. Neuron. 2016 Aug 3;91(3):694-707 [PMID: 27497224]
  55. J Vis. 2021 Aug 2;21(8):13 [PMID: 34369970]
  56. Trends Cogn Sci. 2009 Nov;13(11):488-95 [PMID: 19758835]
  57. Annu Rev Neurosci. 2003;26:381-410 [PMID: 12704222]
  58. J Exp Psychol Gen. 2023 Jul;152(7):1825-1839 [PMID: 37079832]
  59. J Neurosci. 2016 Nov 23;36(47):11918-11928 [PMID: 27881778]
  60. Commun Biol. 2022 Dec 7;5(1):1343 [PMID: 36477440]
  61. J Neurosci. 2012 Nov 28;32(48):17382-90 [PMID: 23197729]
  62. J Neurosci. 2019 Jul 31;39(31):6162-6179 [PMID: 31127004]
  63. Annu Rev Neurosci. 2014;37:205-20 [PMID: 25032495]
  64. J Cogn Neurosci. 2018 Feb;30(2):219-233 [PMID: 28984524]
  65. Hum Brain Mapp. 2014 Aug;35(8):4140-54 [PMID: 24510607]
  66. Cortex. 2023 Mar;160:115-133 [PMID: 36841093]
  67. Curr Opin Neurobiol. 2008 Apr;18(2):217-22 [PMID: 18678253]
  68. J Neurosci. 2012 Sep 19;32(38):12990-8 [PMID: 22993416]
  69. J Neurophysiol. 2018 Jun 1;119(6):2153-2165 [PMID: 29488841]
  70. J Neurosci. 2007 Jan 3;27(1):93-7 [PMID: 17202476]
  71. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10749-53 [PMID: 8248166]
  72. J Neurophysiol. 1996 Oct;76(4):2790-3 [PMID: 8899646]
  73. Neuron. 2009 Jan 29;61(2):168-85 [PMID: 19186161]
  74. Nat Neurosci. 2006 Nov;9(11):1432-8 [PMID: 17057707]
  75. Psychol Rev. 2017 Mar;124(2):197-214 [PMID: 28221087]
  76. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1663-8 [PMID: 9990081]
  77. Neuron. 2007 Oct 25;56(2):366-83 [PMID: 17964252]
  78. Biol Cybern. 1988;58(1):35-49 [PMID: 3345319]
  79. Nat Hum Behav. 2020 Mar;4(3):317-325 [PMID: 32015487]
  80. Atten Percept Psychophys. 2023 Jul;85(5):1710-1721 [PMID: 36720782]
  81. J Neurophysiol. 2004 Jan;91(1):152-62 [PMID: 13679398]
  82. Neuron. 2014 Dec 17;84(6):1329-42 [PMID: 25521381]
  83. PLoS Biol. 2020 Jun 29;18(6):e3000769 [PMID: 32598358]
  84. Neuroimage. 2008 Jan 1;39(1):455-68 [PMID: 17920934]
  85. Nat Neurosci. 2006 May;9(5):690-6 [PMID: 16617339]
  86. Neuroreport. 2000 Jun 26;11(9):1907-13 [PMID: 10884042]
  87. Curr Biol. 2015 Mar 2;25(5):595-600 [PMID: 25702580]
  88. J Neurophysiol. 2011 Sep;106(3):1125-65 [PMID: 21653723]
  89. Neural Comput. 1998 Feb 15;10(2):403-30 [PMID: 9472488]
  90. Neuron. 1999 Apr;22(4):751-61 [PMID: 10230795]
  91. Nature. 2003 Jan 23;421(6921):370-3 [PMID: 12540901]

Grants

  1. F32 EY028438/NEI NIH HHS
  2. R01 EY027925/NEI NIH HHS
  3. R01 EY033925/NEI NIH HHS

Word Cloud

Created with Highcharts 10.0.0memoryneuralcortexworkingdifferencesaccordingrelevancemechanismsresponsesitemsgainmemorandadecodedpredictedbehavioralfrontalvisualresourceallocationmitigatecapacitylimitspeopleallocateresourcesitem'sHoweversupportingcriticaloperationremainunknowndevelopedcomputationalneuroimagingmethodsdecodedemixassociatedmultipledifferentprioritiesstriateextrastriatetrackedpriorityHigher-prioritysmallererrorloweruncertaintyMoreoverprioritizationRemarkablytrialwisevariabilitymagnitudedelayactivityprecisionlowhigh-priorityresultssuggestmodelfeedbacksignalsbroadcastsculptrepresentationsthusidentifyingmechanismNeural

Similar Articles

Cited By

No available data.