Trying Harder: How Cognitive Effort Sculpts Neural Representations during Working Memory.

Sarah L Master, Shanshan Li, Clayton E Curtis
Author Information
  1. Sarah L Master: Department of Psychology, New York University, New York, New York 10003. ORCID
  2. Shanshan Li: Department of Psychology, New York University, New York, New York 10003.
  3. Clayton E Curtis: Department of Psychology, New York University, New York, New York 10003 clayton.curtis@nyu.edu. ORCID

Abstract

While the exertion of mental effort improves performance on cognitive tasks, the neural mechanisms by which motivational factors impact cognition remain unknown. Here, we used fMRI to test how changes in cognitive effort, induced by changes in task difficulty, impact neural representations of working memory (WM). Participants (both sexes) were precued whether WM difficulty would be hard or easy. We hypothesized that hard trials demanded more effort as a later decision required finer mnemonic precision. Behaviorally, pupil size was larger and response times were slower on hard compared with easy trials suggesting our manipulation of effort succeeded. Neurally, we observed robust persistent activity during delay periods in the prefrontal cortex (PFC), especially during hard trials. Yet, details of the memoranda could not be decoded from patterns in prefrontal activity. In the patterns of activity in the visual cortex, however, we found strong decoding of memorized targets, where accuracy was higher on hard trials. To potentially link these across-region effects, we hypothesized that effort, carried by persistent activity in the PFC, impacts the quality of WM representations encoded in the visual cortex. Indeed, we found that the amplitude of delay period activity in the frontal cortex predicted decoded accuracy in the visual cortex on a trial-wise basis. These results indicate that effort-related feedback signals sculpt population activity in the visual cortex, improving mnemonic fidelity.

Keywords

References

  1. Cogn Affect Behav Neurosci. 2021 Jun;21(3):453-471 [PMID: 33409959]
  2. PLoS Comput Biol. 2024 Apr 29;20(4):e1012060 [PMID: 38683857]
  3. Clin Psychol Rev. 2021 Aug;88:102065 [PMID: 34274800]
  4. J Abnorm Psychol. 2018 Oct;127(7):695-709 [PMID: 30335439]
  5. Curr Dir Psychol Sci. 2010 Feb 1;19(1):51-57 [PMID: 20445769]
  6. J Exp Psychol Gen. 2023 Jul;152(7):1825-1839 [PMID: 37079832]
  7. Neuron. 2007 Oct 25;56(2):366-83 [PMID: 17964252]
  8. Nat Neurosci. 2014 Mar;17(3):347-56 [PMID: 24569831]
  9. Dement Geriatr Cogn Disord. 2003;15(2):55-66 [PMID: 12566593]
  10. Vision Res. 2011 Jul 1;51(13):1484-525 [PMID: 21549742]
  11. J Neurosci. 2007 May 16;27(20):5326-37 [PMID: 17507555]
  12. J Vis. 2009 Sep 09;9(10):7.1-11 [PMID: 19810788]
  13. Neuron. 2021 Nov 17;109(22):3699-3712.e6 [PMID: 34525327]
  14. Sci Rep. 2017 Jul 21;7(1):6188 [PMID: 28733684]
  15. Curr Opin Neurobiol. 2010 Apr;20(2):177-82 [PMID: 20362427]
  16. J Neurophysiol. 2016 Sep 1;116(3):1049-54 [PMID: 27306678]
  17. Nature. 1997 Apr 10;386(6625):604-8 [PMID: 9121583]
  18. Annu Rev Neurosci. 2017 Jul 25;40:99-124 [PMID: 28375769]
  19. Psychol Res. 2000;63(3-4):212-33 [PMID: 11004877]
  20. Eur J Neurosci. 2012 Apr;35(7):1024-35 [PMID: 22487033]
  21. Neuron. 2013 Jul 24;79(2):217-40 [PMID: 23889930]
  22. Science. 2008 Aug 8;321(5890):851-4 [PMID: 18687968]
  23. Nat Commun. 2021 Aug 5;12(1):4714 [PMID: 34354071]
  24. Cogn Affect Behav Neurosci. 2015 Jun;15(2):395-415 [PMID: 25673005]
  25. PLoS One. 2010 Dec 20;5(12):e15710 [PMID: 21187930]
  26. Neuroimage. 1997 Jan;5(1):49-62 [PMID: 9038284]
  27. Sci Adv. 2022 Jun 10;8(23):eabc8812 [PMID: 35687684]
  28. J Cogn Neurosci. 2018 Oct;30(10):1473-1498 [PMID: 29877764]
  29. Psychol Rev. 1956 Mar;63(2):81-97 [PMID: 13310704]
  30. J Exp Psychol Gen. 2010 Nov;139(4):665-82 [PMID: 20853993]
  31. Magn Reson Med. 2010 May;63(5):1144-53 [PMID: 20432285]
  32. Nat Commun. 2021 Feb 15;12(1):1030 [PMID: 33589626]
  33. Nat Neurosci. 2010 Dec;13(12):1554-9 [PMID: 21057509]
  34. Cognition. 2018 Jan;170:102-122 [PMID: 28987923]
  35. Netw Neurosci. 2020 Feb 01;4(1):30-69 [PMID: 32043043]
  36. Annu Rev Psychol. 2015 Jan 3;66:115-42 [PMID: 25251486]
  37. J Cogn Neurosci. 2022 Jan 5;34(2):365-379 [PMID: 34942647]
  38. Biol Psychiatry. 2013 Jul 15;74(2):130-6 [PMID: 23394903]
  39. Science. 1966 Dec 23;154(3756):1583-5 [PMID: 5924930]
  40. Neuroimage. 2022 Jul 1;254:119139 [PMID: 35346841]
  41. Elife. 2018 Aug 07;7: [PMID: 30084356]
  42. Cogn Psychol. 2022 Jun;135:101472 [PMID: 35364511]
  43. Trends Cogn Sci. 2010 May;14(5):216-22 [PMID: 20381406]
  44. Neuroimage. 2008 Jan 15;39(2):647-60 [PMID: 17977024]
  45. Nat Neurosci. 2015 Dec;18(12):1728-30 [PMID: 26502262]
  46. J Exp Psychol Gen. 2014 Feb;143(1):131-41 [PMID: 23230991]
  47. Vis cogn. 2017;25(7-8):691-702 [PMID: 30760947]
  48. Front Neural Circuits. 2021 Jul 21;15:696060 [PMID: 34366794]
  49. Trends Cogn Sci. 2018 Apr;22(4):337-349 [PMID: 29477776]
  50. Elife. 2017 Jun 19;6: [PMID: 28628004]
  51. Nat Hum Behav. 2018 Dec;2(12):899-908 [PMID: 30988433]
  52. Neuroimage. 2013 Dec;83:991-1001 [PMID: 23899722]
  53. Psychophysiology. 2017 May;54(5):724-735 [PMID: 28127779]
  54. Spat Vis. 1997;10(4):437-42 [PMID: 9176953]
  55. Vision Res. 2014 Dec;105:70-6 [PMID: 25240420]
  56. J Neurosci. 2014 Oct 8;34(41):13747-56 [PMID: 25297101]
  57. PLoS One. 2023 Jan 17;18(1):e0280257 [PMID: 36649241]
  58. Neuroscience. 2006 Apr 28;139(1):173-80 [PMID: 16326021]
  59. Neuroimage. 2015 Jan 1;104:430-6 [PMID: 25234118]
  60. Annu Rev Vis Sci. 2015 Nov 24;1:373-391 [PMID: 28532368]
  61. Trends Cogn Sci. 2003 Sep;7(9):415-423 [PMID: 12963473]
  62. Nat Neurosci. 2009 Nov;12(11):1463-8 [PMID: 19801987]
  63. Cortex. 2023 Mar;160:115-133 [PMID: 36841093]
  64. Pers Soc Psychol Rev. 2019 May;23(2):107-131 [PMID: 29591537]
  65. Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):6967-72 [PMID: 27274075]
  66. Curr Opin Behav Sci. 2018 Feb;19:83-90 [PMID: 30035206]
  67. J Neurosci. 2012 Sep 19;32(38):12990-8 [PMID: 22993416]
  68. Neuroimage Clin. 2021;30:102617 [PMID: 33752077]
  69. J Neurosci. 2016 Mar 9;36(10):2847-56 [PMID: 26961941]
  70. Spat Vis. 1997;10(4):433-6 [PMID: 9176952]
  71. Neuroreport. 1997 Jan 20;8(2):545-9 [PMID: 9080445]
  72. Neurosci Biobehav Rev. 2006;30(1):1-23 [PMID: 15935475]
  73. Neuroimage. 2008 Jan 1;39(1):455-68 [PMID: 17920934]

Grants

  1. T32 EY007136/NEI NIH HHS

MeSH Term

Humans
Memory, Short-Term
Male
Female
Young Adult
Adult
Magnetic Resonance Imaging
Prefrontal Cortex
Cognition
Reaction Time
Brain Mapping
Visual Cortex
Photic Stimulation

Word Cloud

Created with Highcharts 10.0.0effortactivitycortexhardtrialsvisualcognitiveWMneuralimpactfMRIchangesdifficultyrepresentationsworkingmemoryeasyhypothesizedmnemonicpersistentdelayprefrontalPFCdecodedpatternsfounddecodingaccuracyexertionmentalimprovesperformancetasksmechanismsmotivationalfactorscognitionremainunknownusedtestinducedtaskParticipantssexesprecuedwhetherdemandedlaterdecisionrequiredfinerprecisionBehaviorallypupilsizelargerresponsetimesslowercomparedsuggestingmanipulationsucceededNeurallyobservedrobustperiodsespeciallyYetdetailsmemorandahoweverstrongmemorizedtargetshigherpotentiallylinkacross-regioneffectscarriedimpactsqualityencodedIndeedamplitudeperiodfrontalpredictedtrial-wisebasisresultsindicateeffort-relatedfeedbacksignalssculptpopulationimprovingfidelityTryingHarder:CognitiveEffortSculptsNeuralRepresentationsWorkingMemoryhumanmodelingretinotopy

Similar Articles

Cited By (2)