Stimulating prefrontal cortex facilitates training transfer by increasing representational overlap.

Yohan Wards, Shane E Ehrhardt, Kelly G Garner, Jason B Mattingley, Hannah L Filmer, Paul E Dux
Author Information
  1. Yohan Wards: School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia. ORCID
  2. Shane E Ehrhardt: School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia. ORCID
  3. Kelly G Garner: School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia. ORCID
  4. Jason B Mattingley: School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia. ORCID
  5. Hannah L Filmer: School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia. ORCID
  6. Paul E Dux: School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia.

Abstract

A recent hypothesis characterizes difficulties in multitasking as being the price humans pay for our ability to generalize learning across tasks. The mitigation of these costs through training has been associated with reduced overlap of constituent task representations within frontal, parietal, and subcortical regions. Transcranial direct current stimulation, which can modulate functional brain activity, has shown promise in generalizing performance gains when combined with multitasking training. However, the relationship between combined transcranial direct current stimulation and training protocols with task-associated representational overlap in the brain remains unexplored. Here, we paired prefrontal cortex transcranial direct current stimulation with multitasking training in 178 individuals and collected functional magnetic resonance imaging data pre- and post-training. We found that 1 mA transcranial direct current stimulation applied to the prefrontal cortex paired with multitasking training enhanced training transfer to spatial attention, as assessed via a visual search task. Using machine learning to assess the overlap of neural activity related to the training task in task-relevant brain regions, we found that visual search gains were predicted by changes in classification accuracy in frontal, parietal, and cerebellar regions for participants that received left prefrontal cortex stimulation. These findings demonstrate that prefrontal cortex transcranial direct current stimulation may interact with training-related changes to task representations, facilitating the generalization of learning.

Keywords

References

  1. Sci Rep. 2016 Feb 23;6:22003 [PMID: 26902664]
  2. Brain Stimul. 2016 Sep-Oct;9(5):641-661 [PMID: 27372845]
  3. Nat Neurosci. 2014 Apr;17(4):601-11 [PMID: 24584049]
  4. Neuroimage. 2021 Apr 1;229:117755 [PMID: 33454402]
  5. Trends Cogn Sci. 2019 Jan;23(1):9-20 [PMID: 30471868]
  6. Nat Rev Neurosci. 2011 Apr;12(4):231-42 [PMID: 21407245]
  7. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14372-7 [PMID: 26460014]
  8. J Neurophysiol. 2021 Feb 1;125(2):385-397 [PMID: 33174483]
  9. Brain Stimul. 2014 Jul-Aug;7(4):499-507 [PMID: 25047826]
  10. Cereb Cortex. 2023 Dec 9;33(24):11679-11694 [PMID: 37930735]
  11. Psychol Bull. 1994 Sep;116(2):220-44 [PMID: 7972591]
  12. Neuron. 2009 Jul 16;63(1):127-38 [PMID: 19607798]
  13. Int J Neuropsychopharmacol. 2013 Oct;16(9):1927-36 [PMID: 23719048]
  14. Trends Cogn Sci. 2005 Jun;9(6):296-305 [PMID: 15925809]
  15. Nat Neurosci. 2018 Feb;21(2):174-187 [PMID: 29311747]
  16. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 [PMID: 17576922]
  17. J Inherit Metab Dis. 2018 Jul 13;: [PMID: 30006770]
  18. Cortex. 2020 Feb;123:141-151 [PMID: 31783223]
  19. Front Neuroinform. 2011 Aug 22;5:13 [PMID: 21897815]
  20. Sci Rep. 2017 Apr 21;7(1):876 [PMID: 28432349]
  21. Exp Brain Res. 2014 Oct;232(10):3345-51 [PMID: 24992897]
  22. Curr Biol. 2011 Jun 7;21(11):980-3 [PMID: 21620706]
  23. J Cogn Neurosci. 2007 Dec;19(12):2082-99 [PMID: 17892391]
  24. Nat Commun. 2016 Mar 22;7:11100 [PMID: 27000523]
  25. Neuroimage. 2009 May 15;46(1):338-42 [PMID: 19457362]
  26. Nature. 2010 Jun 10;465(7299):775-8 [PMID: 20407435]
  27. J Neurosci. 2007 Mar 14;27(11):3030-6 [PMID: 17360926]
  28. Nature. 2022 Mar;603(7902):654-660 [PMID: 35296861]
  29. PLoS Comput Biol. 2020 Apr 24;16(4):e1007514 [PMID: 32330126]
  30. Atten Percept Psychophys. 2014 May;76(4):979-99 [PMID: 24627208]
  31. Neuron. 2010 Apr 29;66(2):315-26 [PMID: 20435006]
  32. Proc Natl Acad Sci U S A. 1956 Sep;42(9):687-94 [PMID: 16589932]
  33. J Exp Psychol. 1969 Jul;81(1):10-5 [PMID: 5812164]
  34. Sci Rep. 2017 Oct 11;7(1):12988 [PMID: 29021526]
  35. J Neurosci. 2011 Oct 26;31(43):15416-23 [PMID: 22031888]
  36. Nat Methods. 2019 Jan;16(1):111-116 [PMID: 30532080]
  37. Neuroimage. 2003 Mar;18(3):789-97 [PMID: 12667855]
  38. Front Hum Neurosci. 2013 Mar 27;7:75 [PMID: 23543881]
  39. Neurosci Biobehav Rev. 2018 Jan;84:171-181 [PMID: 29128578]
  40. J Cogn Neurosci. 2003 Nov 15;15(8):1080-94 [PMID: 14709228]
  41. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16616-21 [PMID: 24062451]
  42. Neuron. 2017 Dec 20;96(6):1239-1251 [PMID: 29268094]
  43. Brain Stimul. 2014 May-Jun;7(3):372-80 [PMID: 24630849]
  44. Neuroinformatics. 2013 Jul;11(3):319-37 [PMID: 23417655]
  45. Cereb Cortex. 2014 Feb;24(2):532-40 [PMID: 23131804]
  46. Neuropsychologia. 2018 Sep;118(Pt A):107-114 [PMID: 29649503]
  47. Hum Brain Mapp. 2019 Oct 1;40(14):4026-4037 [PMID: 31179609]
  48. Neuron. 2006 Dec 21;52(6):1109-20 [PMID: 17178412]
  49. J Neurosci. 2024 May 22;44(21): [PMID: 38531634]
  50. Neuroimage. 2014 Jan 1;84:320-41 [PMID: 23994314]
  51. Neuroscientist. 2011 Feb;17(1):37-53 [PMID: 21343407]
  52. Nat Commun. 2020 Jun 15;11(1):3035 [PMID: 32541774]
  53. Sci Adv. 2020 Nov 4;6(45): [PMID: 33148657]
  54. Spat Vis. 1997;10(4):437-42 [PMID: 9176953]
  55. Cereb Cortex. 2011 Feb;21(2):307-17 [PMID: 20522540]
  56. Psychol Res. 2012 Nov;76(6):794-811 [PMID: 21947746]
  57. Atten Percept Psychophys. 2009 Nov;71(8):1683-700 [PMID: 19933555]
  58. Brain Stimul. 2016 Jul-Aug;9(4):501-17 [PMID: 27160468]
  59. J Neurosci. 2016 Jun 8;36(23):6147-55 [PMID: 27277793]
  60. Trends Cogn Sci. 2010 Apr;14(4):172-9 [PMID: 20171926]
  61. Neuropsychologia. 2013 Aug;51(9):1777-84 [PMID: 23751169]
  62. Exp Brain Res. 2007 Aug;181(4):615-26 [PMID: 17487476]
  63. Brain Res Cogn Brain Res. 2005 Dec;25(3):607-23 [PMID: 16242923]
  64. Psychol Aging. 2008 Dec;23(4):692-701 [PMID: 19140641]
  65. Adv Cogn Psychol. 2017 Mar 31;13(1):28-41 [PMID: 28439319]
  66. Trends Cogn Sci. 2021 Sep;25(9):757-775 [PMID: 34332856]
  67. J Neurophysiol. 2019 May 1;121(5):1906-1916 [PMID: 30917064]
  68. Neuropsychologia. 2016 Dec;93(Pt A):85-96 [PMID: 27756695]
  69. Neuron. 2015 Dec 16;88(6):1297-1307 [PMID: 26627309]
  70. Psychon Bull Rev. 2020 Feb;27(1):3-14 [PMID: 31152433]
  71. Nat Rev Neurosci. 2023 Feb;24(2):98-112 [PMID: 36347942]
  72. Q J Exp Psychol (Hove). 2011 Jul;64(7):1251-72 [PMID: 21462091]
  73. Mem Cognit. 2014 Apr;42(3):464-80 [PMID: 24081919]
  74. Elife. 2021 Mar 17;10: [PMID: 33729156]
  75. J Exp Psychol Hum Percept Perform. 2016 Aug;42(8):1148-57 [PMID: 26882179]
  76. Spat Vis. 1997;10(4):433-6 [PMID: 9176952]
  77. Front Hum Neurosci. 2013 Oct 21;7:688 [PMID: 24155708]
  78. J Neurosci. 2013 Sep 11;33(37):14899-907 [PMID: 24027289]
  79. J Neurosci. 2010 Nov 10;30(45):15067-79 [PMID: 21068312]
  80. J Exp Psychol Hum Percept Perform. 1992 Aug;18(3):849-60 [PMID: 1500880]
  81. Cereb Cortex. 2017 Jul 1;27(7):3675-3682 [PMID: 27436130]
  82. eNeuro. 2020 Aug 28;7(4): [PMID: 32817195]
  83. Neuropsychologia. 2022 Nov 5;176:108397 [PMID: 36272676]

Grants

  1. DP180101885/Australian Research Council
  2. /Department of Defense
  3. /Australian Government Research Training Program Scholarships
  4. GNT2010141/National Health and Medical Research Council
  5. /European Union's Horizon 2020 Research and Innovation Program
  6. 796329/Marie Sklodowska-Curie
  7. DE190100299/Australian Research Council Discovery Early Career Research Award

MeSH Term

Humans
Prefrontal Cortex
Male
Transcranial Direct Current Stimulation
Female
Magnetic Resonance Imaging
Young Adult
Adult
Attention
Transfer, Psychology
Brain Mapping
Learning
Adolescent

Word Cloud

Created with Highcharts 10.0.0trainingstimulationlearningdirectcurrentprefrontalcortexmultitaskingoverlaptasktranscranialregionsbraintransferrepresentationsfrontalparietalfunctionalactivitygainscombinedrepresentationalpairedfoundvisualsearchmachinechangesrecenthypothesischaracterizesdifficultiespricehumanspayabilitygeneralizeacrosstasksmitigationcostsassociatedreducedconstituentwithinsubcorticalTranscranialcanmodulateshownpromisegeneralizingperformanceHoweverrelationshipprotocolstask-associatedremainsunexplored178individualscollectedmagneticresonanceimagingdatapre-post-training1 mAappliedenhancedspatialattentionassessedviaUsingassessneuralrelatedtask-relevantpredictedclassificationaccuracycerebellarparticipantsreceivedleftfindingsdemonstratemayinteracttraining-relatedfacilitatinggeneralizationStimulatingfacilitatesincreasingcognitivetDCS

Similar Articles

Cited By