DNA as a perfect quantum computer based on the quantum physics principles.

R Riera Aroche, Y M Ortiz Garc��a, M A Mart��nez Arellano, A Riera Leal
Author Information
  1. R Riera Aroche: Department of Research in Physics, University of Sonora, Hermosillo, Sonora, Mexico.
  2. Y M Ortiz Garc��a: Research Institute of Dentistry, University of Guadalajara, Guadalajara Jalisco, Mexico.
  3. M A Mart��nez Arellano: General Hospital of the State of Sonora, Boulevar Jos�� Mar��a Escriv�� de Balaguer 157, Colonia Villa del Palmar, C.P. 83105, Hermosillo, Sonora, Mexico.
  4. A Riera Leal: General Hospital of the State of Sonora, Boulevar Jos�� Mar��a Escriv�� de Balaguer 157, Colonia Villa del Palmar, C.P. 83105, Hermosillo, Sonora, Mexico. annierieraleal78@yahoo.es. ORCID

Abstract

DNA is A complex multi-resolution molecule whose theoretical study is A challenge. Its intrinsic multiscale nature requires chemistry and quantum physics to understand the structure and quantum informatics to explain its operation as A perfect quantum computer. Here, we present theoretical results of DNA that allow A better description of its structure and the operation process in the transmission, coding, and decoding of genetic information. Aromaticity is explained by the oscillatory resonant quantum state of correlated electron and hole pairs due to the quantized molecular vibrational energy acting as an attractive force. The correlated pairs form A supercurrent in the nitrogenous bases in A single band -molecular orbital ( -MO). The MO wave function is assumed to be the linear combination of the n constituent atomic orbitals. The central Hydrogen bond between Adenine (A) and Thymine (T) or Guanine (G) and Cytosine (C) functions like an ideal Josephson Junction. The approach of A Josephson Effect between two superconductors is correctly described, as well as the condensation of the nitrogenous bases to obtain the two entangled quantum states that form the qubit. Combining the quantum state of the composite system with the classical information, RNA polymerase teleports one of the four Bell states. DNA is A perfect quantum computer.

Keywords

References

  1. Phys Rev Lett. 1995 Jun 12;74(24):4915-4918 [PMID: 10058631]
  2. Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8691-6 [PMID: 16731617]
  3. J Phys Chem A. 2011 Nov 24;115(46):13649-56 [PMID: 21954962]
  4. Phys Chem Chem Phys. 2008 May 21;10(19):2595-610 [PMID: 18464974]
  5. J Phys Condens Matter. 2023 Jan 24;35(8): [PMID: 36595229]
  6. J Mater Chem B. 2013 Aug 21;1(31):3742-3753 [PMID: 32261127]
  7. Phys Chem Chem Phys. 2021 Mar 21;23(11):6341-6343 [PMID: 33704324]
  8. Phys Rev Lett. 2021 Jul 16;127(3):030402 [PMID: 34328769]
  9. Phys Chem Chem Phys. 2016 Apr 28;18(17):11839-46 [PMID: 26878146]
  10. Nat Commun. 2019 Jul 18;10(1):3167 [PMID: 31320623]
  11. Sci Rep. 2014 Dec 23;4:7590 [PMID: 25534108]
  12. J Chem Inf Model. 2023 May 22;63(10):3150-3157 [PMID: 37125692]
  13. Curr Opin Struct Biol. 2016 Apr;37:29-45 [PMID: 26708341]
  14. Nat Commun. 2019 Nov 7;10(1):5074 [PMID: 31699987]
  15. J Chem Phys. 2015 Sep 7;143(9):094304 [PMID: 26342367]
  16. Prog Nucleic Acid Res Mol Biol. 1970;10:183-265 [PMID: 4910304]
  17. Chem Commun (Camb). 2001 Nov 7;(21):2220-1 [PMID: 12240120]
  18. Sci Technol Adv Mater. 2009 Jul 6;10(2):024302 [PMID: 27877275]
  19. Nature. 2012 May 23;485(7400):619-22 [PMID: 22660322]
  20. Nature. 2020 Feb;578(7793):66-69 [PMID: 32025016]
  21. Chem Sci. 2020 Jul 23;11(31):8273-8287 [PMID: 34094181]
  22. Nano Lett. 2022 Jul 13;22(13):5510-5515 [PMID: 35736540]
  23. R Soc Open Sci. 2020 Nov 25;7(11):200774 [PMID: 33391787]
  24. Phys Rev Lett. 2014 Dec 5;113(23):236603 [PMID: 25526145]
  25. Nat Commun. 2023 Sep 25;14(1):5966 [PMID: 37749106]
  26. J Theor Biol. 2016 Feb 21;391:102-12 [PMID: 26682627]
  27. Phys Rev Lett. 2018 Dec 21;121(25):253402 [PMID: 30608823]
  28. Nature. 2001 Jul 26;412(6845):420-3 [PMID: 11473312]
  29. J Phys Chem Lett. 2022 Nov 24;13(46):10811-10815 [PMID: 36378687]
  30. Phys Rev Lett. 2021 Mar 19;126(11):110402 [PMID: 33798366]
  31. J Phys Chem A. 2018 Mar 1;122(8):2279-2287 [PMID: 29378123]
  32. Phys Rev Lett. 2010 Mar 19;104(11):117002 [PMID: 20366498]
  33. J Am Chem Soc. 2006 Jan 18;128(2):607-19 [PMID: 16402849]
  34. Science. 2021 Sep 17;373(6561):1340-1343 [PMID: 34529460]
  35. Biochemistry. 2019 May 21;58(20):2474-2487 [PMID: 31008589]
  36. Sci Prog. 2004;87(Pt 1):51-78 [PMID: 15651639]
  37. Chem Rev. 2004 Nov;104(11):5419-48 [PMID: 15535655]
  38. Nature. 2006 Sep 28;443(7110):409-14 [PMID: 17006506]
  39. J Am Chem Soc. 2004 Dec 22;126(50):16310-1 [PMID: 15600318]
  40. Polymers (Basel). 2020 Jul 03;12(7): [PMID: 32635334]
  41. Phys Chem Chem Phys. 2016 Apr 28;18(17):11653-60 [PMID: 26444568]
  42. Chemistry. 2022 May 11;28(27):e202200080 [PMID: 35293642]
  43. Chem Asian J. 2019 Dec 2;14(23):4309-4314 [PMID: 31622545]
  44. J Phys Chem B. 2020 Nov 19;124(46):10345-10352 [PMID: 33156627]
  45. Nanoscale Adv. 2021 Jun 15;3(15):4349-4369 [PMID: 36133477]
  46. J Phys Chem A. 2019 Jan 10;123(1):284-292 [PMID: 30561203]
  47. Phys Rev Lett. 2022 Oct 21;129(17):177001 [PMID: 36332257]
  48. Sci Rep. 2014 Feb 28;4:4109 [PMID: 24576851]
  49. Nature. 2017 Jan 12;541(7636):200-203 [PMID: 27992878]
  50. Sci Adv. 2019 Feb 01;5(2):eaap7349 [PMID: 30746483]
  51. Phys Chem Chem Phys. 2013 Feb 21;15(7):2514-22 [PMID: 23322083]
  52. Pharmacogenomics. 2014 Nov;15(14):1771-1790 [PMID: 25493570]
  53. Phys Rev Lett. 2011 Aug 12;107(7):077001 [PMID: 21902418]
  54. J Am Chem Soc. 2019 Oct 30;141(43):17394-17403 [PMID: 31580662]
  55. Phys Chem Chem Phys. 2011 Mar 7;13(9):3737-47 [PMID: 21180707]
  56. Biochim Biophys Acta. 2014 Sep;1837(9):1490-9 [PMID: 24560813]
  57. Chemistry. 2002 Aug 2;8(15):3423-30 [PMID: 12203322]
  58. ChemistryOpen. 2022 Feb;11(2):e202100231 [PMID: 35083880]
  59. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12759-65 [PMID: 9788986]
  60. Nucleic Acids Res. 2015 Mar 11;43(5):2499-512 [PMID: 25690900]
  61. Phys Rev Lett. 1991 Aug 5;67(6):661-663 [PMID: 10044956]
  62. Biopolymers. 2013 Dec;99(12):978-88 [PMID: 23784745]
  63. Nature. 1996 Aug 22;382(6593):731-5 [PMID: 8751447]
  64. Nanotechnology. 2023 Aug 31;34(46): [PMID: 37579747]
  65. Nucleic Acids Res. 2013 Oct;41(19):8886-95 [PMID: 23935069]
  66. Nat Commun. 2022 Feb 8;13(1):743 [PMID: 35136053]
  67. Nat Methods. 2021 Jul;18(7):701-709 [PMID: 33398186]
  68. Adv Protein Chem. 2003;66:27-85 [PMID: 14631816]
  69. Nucleic Acids Res. 2002 Aug 15;30(16):3497-531 [PMID: 12177293]
  70. Ann Sci. 2015 Apr;72(2):242-57 [PMID: 26104167]
  71. J Chem Phys. 2020 Oct 21;153(15):154106 [PMID: 33092364]
  72. Entropy (Basel). 2022 Jan 03;24(1): [PMID: 35052109]
  73. Philos Trans A Math Phys Eng Sci. 2016 Sep 13;374(2076): [PMID: 27501971]
  74. Phys Chem Chem Phys. 2021 Apr 14;23(14):8891-8899 [PMID: 33876048]
  75. Nature. 2007 Oct 4;449(7162):579-83 [PMID: 17914391]
  76. Nat Commun. 2023 Aug 1;14(1):4604 [PMID: 37528094]
  77. J Am Chem Soc. 1967 Feb 1;89(3):496-504 [PMID: 6040816]
  78. J Phys Chem A. 2009 Feb 5;113(5):878-86 [PMID: 19132847]
  79. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33084-33089 [PMID: 33328276]
  80. Nat Commun. 2023 Apr 7;14(1):1945 [PMID: 37029104]
  81. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11713-6 [PMID: 10518515]
  82. Int J Mol Sci. 2021 Dec 26;23(1): [PMID: 35008659]
  83. Top Curr Chem. 2015;355:245-327 [PMID: 25238718]
  84. Phys Rev B Condens Matter. 1993 Aug 1;48(5):3327-3339 [PMID: 10008760]
  85. Nat Commun. 2023 Mar 23;14(1):1628 [PMID: 36959191]
  86. Molecules. 2019 Nov 07;24(22): [PMID: 31703470]
  87. Phys Rev Lett. 2012 Dec 28;109(26):267001 [PMID: 23368603]
  88. Nature. 1974 Apr 26;248(5451):765 [PMID: 4599080]
  89. Phys Rev B. 2017;95: [PMID: 31276076]
  90. J Biomol Struct Dyn. 1996 Feb;13(4):695-706 [PMID: 8906890]
  91. Br Med Bull. 1965 Sep;21(3):229-35 [PMID: 5317922]
  92. Phys Rev Lett. 2009 May 8;102(18):187001 [PMID: 19518900]
  93. J Am Chem Soc. 2014 Nov 5;136(44):15537-44 [PMID: 25296000]
  94. Philos Trans A Math Phys Eng Sci. 2017 Nov 13;375(2106): [PMID: 28971945]
  95. Entropy (Basel). 2023 Feb 25;25(3): [PMID: 36981304]
  96. Polymers (Basel). 2022 Feb 13;14(4): [PMID: 35215629]
  97. Chem Rec. 2011 Jun;11(3):124-45 [PMID: 21626655]
  98. Nature. 2023 Sep;621(7979):499-505 [PMID: 37674075]
  99. Nature. 2001 May 17;411(6835):280-3 [PMID: 11357124]
  100. PLoS One. 2010 Dec 29;5(12):e15931 [PMID: 21209967]
  101. Nucleic Acids Res. 2013 Feb 1;41(3):2034-46 [PMID: 23268444]
  102. Chem Biol. 1997 Jan;4(1):3-8 [PMID: 9070421]
  103. Nat Commun. 2021 Nov 12;12(1):6580 [PMID: 34772912]
  104. Dalton Trans. 2021 May 14;50(18):6034-6049 [PMID: 33973587]
  105. Cold Spring Harb Symp Quant Biol. 1953;18:123-31 [PMID: 13168976]
  106. Annu Rev Phys Chem. 2008;59:261-90 [PMID: 18031211]
  107. Org Lett. 2003 Mar 20;5(6):865-8 [PMID: 12633092]
  108. Biochemistry. 1997 Mar 4;36(9):2659-68 [PMID: 9054573]
  109. Nanomaterials (Basel). 2023 Sep 04;13(17): [PMID: 37686996]
  110. Sci Rep. 2023 Apr 4;13(1):5539 [PMID: 37015956]
  111. Phys Rev Lett. 2009 Feb 20;102(7):075506 [PMID: 19257689]
  112. Nature. 2019 Sep;573(7772):45-54 [PMID: 31462772]
  113. Chem Soc Rev. 2022 Mar 21;51(6):1861-1880 [PMID: 35188514]
  114. Nature. 2014 Apr 24;508(7497):500-3 [PMID: 24759412]
  115. Phys Rev Lett. 2020 Dec 31;125(26):260506 [PMID: 33449714]
  116. J Mol Biol. 2013 Mar 11;425(5):875-85 [PMID: 23274143]
  117. J Am Chem Soc. 2004 Aug 18;126(32):10119-29 [PMID: 15303888]
  118. Science. 2011 Jan 14;331(6014):186-8 [PMID: 21233380]
  119. Molecules. 2021 Jul 10;26(14): [PMID: 34299473]
  120. Chemistry. 2019 Aug 14;25(46):10938-10945 [PMID: 31206860]

Word Cloud

Created with Highcharts 10.0.0quantumDNAperfectcomputerpairsJosephsonstatestheoreticalphysicsstructureoperationinformationresonantstatecorrelatedholeformnitrogenousbasesJunctiontwoqubitcomplexmulti-resolutionmoleculewhosestudychallengeintrinsicmultiscalenaturerequireschemistryunderstandinformaticsexplainpresentresultsallowbetterdescriptionprocesstransmissioncodingdecodinggeneticAromaticityexplainedoscillatoryelectronduequantizedmolecularvibrationalenergyactingattractiveforcesupercurrentsingleband-molecularorbital-MOMOwavefunctionassumedlinearcombinationnconstituentatomicorbitalscentralHydrogenbondAdenineThymineTGuanineGCytosineCfunctionslikeidealapproachEffectsuperconductorscorrectlydescribedwellcondensationobtainentangledCombiningcompositesystemclassicalRNApolymeraseteleportsonefourBellbasedprinciplesElectronOscillatory

Similar Articles

Cited By