Integrative analysis of Iso-Seq and RNA-seq data reveals transcriptome complexity and differential isoform in skin tissues of different hair length Yak.

Xuelan Zhou, Xiaoyun Wu, Chengfang Pei, Meilan He, Min Chu, Xian Guo, Chunnian Liang, Pengjia Bao, Ping Yan
Author Information
  1. Xuelan Zhou: Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China.
  2. Xiaoyun Wu: Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China.
  3. Chengfang Pei: Animal Husbandry Technology Promotion Station of Tianzhu County, 733000, Wuwei, P.R. China.
  4. Meilan He: Animal Husbandry Technology Promotion Station of Tianzhu County, 733000, Wuwei, P.R. China.
  5. Min Chu: Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China.
  6. Xian Guo: Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China.
  7. Chunnian Liang: Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China.
  8. Pengjia Bao: Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China. baopengjia@caas.cn.
  9. Ping Yan: Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, 730050, Lanzhou, P.R. China. pingyanlz@163.com.

Abstract

BACKGROUND: The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY).
RESULTS: The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak.
CONCLUSIONS: The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.

Keywords

References

  1. J Cell Sci. 2007 Aug 1;120(Pt 15):2631-40 [PMID: 17636002]
  2. Nature. 1995 Oct 12;377(6549):539-44 [PMID: 7566154]
  3. Mol Med Rep. 2018 Apr;17(4):5477-5483 [PMID: 29393477]
  4. BMC Genomics. 2019 Feb 15;20(1):140 [PMID: 30770723]
  5. Int J Biol Macromol. 2022 May 15;207:110-120 [PMID: 35248611]
  6. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  7. Bioinformatics. 2005 May 1;21(9):1859-75 [PMID: 15728110]
  8. J Exp Clin Cancer Res. 2021 Feb 1;40(1):51 [PMID: 33526057]
  9. BMC Genomics. 2020 Oct 1;21(1):681 [PMID: 32998696]
  10. J Therm Biol. 2017 Oct;69:302-310 [PMID: 29037398]
  11. J Anim Sci. 2003 Jan;81(1):80-90 [PMID: 12597376]
  12. Front Genet. 2020 Aug 04;11:694 [PMID: 32849769]
  13. Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.7 [PMID: 21154709]
  14. J Invest Dermatol. 1998 Dec;111(6):963-72 [PMID: 9856803]
  15. Stem Cell Res Ther. 2020 Apr 3;11(1):144 [PMID: 32245516]
  16. Bioinformatics. 2014 Dec 15;30(24):3506-14 [PMID: 25165095]
  17. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  18. Trop Anim Health Prod. 2010 Dec;42(8):1821-8 [PMID: 20652407]
  19. Cell. 2001 Jan 26;104(2):233-45 [PMID: 11207364]
  20. Biochim Biophys Acta. 1996 Apr 10;1306(1):31-3 [PMID: 8611621]
  21. Front Cell Dev Biol. 2022 Apr 01;10:836913 [PMID: 35433706]
  22. Am J Hum Genet. 2011 Jun 10;88(6):819-826 [PMID: 21636067]
  23. Int J Mol Sci. 2022 Oct 27;23(21): [PMID: 36361817]
  24. Signal Transduct Target Ther. 2022 Jun 3;7(1):171 [PMID: 35654769]
  25. J Clin Lab Anal. 2023 Jan;37(1):e24791 [PMID: 36458379]
  26. Equine Vet J. 2018 May;50(3):339-342 [PMID: 29053900]
  27. Differentiation. 2004 Dec;72(9-10):512-26 [PMID: 15617562]
  28. Development. 2016 Nov 1;143(21):3871-3881 [PMID: 27803056]
  29. In Vitro Cell Dev Biol Anim. 2022 Apr;58(4):325-334 [PMID: 35426064]
  30. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  31. Dev Cell. 2021 Mar 22;56(6):761-780.e7 [PMID: 33725480]
  32. Anim Biotechnol. 2020 Apr;31(2):122-134 [PMID: 30632899]
  33. Gigascience. 2018 Jan 1;7(1):1-6 [PMID: 29220494]
  34. Front Genet. 2022 Mar 11;13:798076 [PMID: 35360871]
  35. Front Genet. 2022 Oct 25;13:931797 [PMID: 36386842]
  36. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  37. BMC Genomics. 2019 May 7;20(1):344 [PMID: 31064321]
  38. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10648-53 [PMID: 24989505]
  39. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  40. PeerJ. 2021 Nov 03;9:e12454 [PMID: 34760406]
  41. Am J Pathol. 2012 Jul;181(1):74-84 [PMID: 22613027]
  42. Nat Commun. 2016 Jun 24;7:11706 [PMID: 27339290]
  43. Animals (Basel). 2021 Oct 08;11(10): [PMID: 34679927]
  44. Anim Front. 2021 May 17;11(2):15-23 [PMID: 34026311]
  45. Ann Transl Med. 2022 Nov;10(22):1226 [PMID: 36544676]
  46. Genes (Basel). 2021 Jan 27;12(2): [PMID: 33513983]
  47. Anim Genet. 2013 Aug;44(4):425-31 [PMID: 23384345]
  48. Front Vet Sci. 2022 Sep 02;9:995604 [PMID: 36118352]
  49. Carcinogenesis. 2012 Dec;33(12):2369-76 [PMID: 22971575]
  50. Front Genet. 2021 Jul 15;12:683408 [PMID: 34335690]
  51. Anim Genet. 2007 Jun;38(3):218-21 [PMID: 17433015]
  52. Anim Genet. 2021 Dec;52(6):848-856 [PMID: 34432312]
  53. Science. 2009 Jan 2;323(5910):133-8 [PMID: 19023044]
  54. J Biosci Bioeng. 2022 Jul;134(1):55-61 [PMID: 35431119]

Grants

  1. 25-LZIHPS-01/the Agricultural Science and Technology Innovation Program
  2. 25-LZIHPS-01/the Agricultural Science and Technology Innovation Program
  3. CARS-37/China Agriculture Research System of MOF and MARA
  4. 2021YFD1600200/National Key Research and Development Program of China

MeSH Term

Animals
Cattle
Transcriptome
RNA-Seq
Skin
Hair
Protein Isoforms
Hair Follicle
Gene Expression Profiling
Alternative Splicing
Sequence Analysis, RNA

Word Cloud

Created with Highcharts 10.0.0hairyaklengthskinfollicleTianzhuwhiteforeheadshouldersequencingRNA-seqLHYNHYDEIsanalysisIso-seqlongcomplexitydifferenceisoformsdifferentialdevelopmentgenessignalingIsoformshowedisoformtranscriptsalternativeeventsdatadevelopment-relatedlikeCOL2A1twopathwaysinteractionresultsgrowthtranscriptomeBACKGROUND:processregulatedsophisticatednetworksgrowspopulationexhibitsdifferencesespeciallyregionHowevergeneticmechanismstilluncleartechnologyadvantagesreadsHencecombinedmethodsinvestigatetranscriptlong-hairednormal-hairedRESULTS:measurementresultsignificantP-value < 0001samplespooledobtainednumerousincludingnovelnon-codingRNAsplicingpolyadenylationCombinedperformedfoundBMP4KRT2IGF2RCOL1A2BMP1KRT1FGF5IGFBP5EnrichmentrevealedcomparablegroupssignificantlyparticipatedECM-receptorfocaladhesionPI3K-AktindicatedmayinfluenceBesidesprotein-proteinPPInetworkCOL3A1exhibitedhighdegreecentralitysuggestedpotentialcandidatesCONCLUSIONS:providedcomprehensiveidentifiedenhanceunderstandingmolecularmechanismsunderlyingvariationIntegrativeIso-SeqrevealstissuesdifferentYakDifferentialHair

Similar Articles

Cited By

No available data.