Cost-utility analysis of prenatal diagnosis of congenital cardiac diseases using deep learning.

Gary M Ginsberg, Lior Drukker, Uri Pollak, Mayer Brezis
Author Information
  1. Gary M Ginsberg: Braun School of Public Health, Hebrew University, Jerusalem, Israel. gmginsberg@gmail.com.
  2. Lior Drukker: Department of Obstetrics and Gynecology, Rabin-Belinson Medical Center, Petah Tikva, Israel.
  3. Uri Pollak: Pediatric Critical Care Sector, Hadassah University Medical Center, Jerusalem, Israel.
  4. Mayer Brezis: Braun School of Public Health, Hebrew University, Jerusalem, Israel.

Abstract

BACKGROUND: Deep learning (DL) is a new technology that can assist prenatal ultrasound (US) in the detection of congenital heart disease (CHD) at the prenatal stage. Hence, an economic-epidemiologic evaluation (aka Cost-Utility Analysis) is required to assist policymakers in deciding whether to adopt the new technology.
METHODS: The incremental cost-utility ratios (CUR), of adding DL assisted ultrasound (DL-US) to the current provision of US plus pulse oximetry (POX), was calculated by building a spreadsheet model that integrated demographic, economic epidemiological, health service utilization, screening performance, survival and lifetime quality of life data based on the standard formula: US screening data were based on real-world operational routine reports (as opposed to research studies). The DL screening cost of 145 USD was based on Israeli US costs plus 20.54 USD for reading and recording screens.
RESULTS: The addition of DL assisted US, which is associated with increased sensitivity (95% vs 58.1%), resulted in far fewer undiagnosed infants (16 vs 102 [or 2.9% vs 15.4%] of the 560 and 659 births, respectively). Adoption of DL-US will add 1,204 QALYs. with increased screening costs 22.5 million USD largely offset by decreased treatment costs (20.4 million USD). Therefore, the new DL-US technology is considered "very cost-effective", costing only 1,720 USD per QALY. For most performance combinations (sensitivity���>���80%, specificity���>���90%), the adoption of DL-US is either cost effective or very cost effective. For specificities greater than 98% (with sensitivities above 94%), DL-US (& POX) is said to "dominate" US (& POX) by providing more QALYs at a lower cost.
CONCLUSION: Our exploratory CUA calculations indicate the feasibility of DL-US as being at least cost-effective.

Keywords

References

  1. Health Technol Assess. 2005 Nov;9(44):1-152, iii-iv [PMID: 16297355]
  2. Arch Womens Ment Health. 2009 Feb;12(1):35-41 [PMID: 19137447]
  3. Cost Eff Resour Alloc. 2019 Jun 24;17:11 [PMID: 31285695]
  4. Prenat Diagn. 2001 Apr;21(4):243-52 [PMID: 11288111]
  5. Ultrasound Obstet Gynecol. 2006 Jul;28(1):8-14 [PMID: 16736449]
  6. Birth Defects Res A Clin Mol Teratol. 2013 Oct;97(10):664-72 [PMID: 24000201]
  7. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1403-1406 [PMID: 34891547]
  8. Obstet Gynecol. 2000 Oct;96(4):511-6 [PMID: 11004350]
  9. Ultrasound Obstet Gynecol. 2013 Mar;41(3):348-59 [PMID: 23460196]
  10. Resuscitation. 2015 Jan;86:54-61 [PMID: 25447040]
  11. J Ultrasound Med. 2018 Aug;37(8):2063-2073 [PMID: 29476550]
  12. BMJ Open. 2017 Nov 8;7(11):e018285 [PMID: 29122798]
  13. Aust N Z J Obstet Gynaecol. 2008 Dec;48(6):559-63 [PMID: 19133043]
  14. JAMA. 1999 Jun 2;281(21):1991-7 [PMID: 10359387]
  15. Ultrasound Obstet Gynecol. 2001 May;17(5):380-5 [PMID: 11380960]
  16. J Child Health Care. 2020 Jun;24(2):297-316 [PMID: 32216565]
  17. Pediatr Crit Care Med. 2018 Jul;19(7):626-634 [PMID: 29533356]
  18. Arch Dis Child. 2016 Jun;101(6):505-507 [PMID: 26819268]
  19. Isr Med Assoc J. 2021 Apr;23(4):229-232 [PMID: 33899355]
  20. BMJ. 2009 Jan 08;338:a3037 [PMID: 19131383]
  21. J R Soc Med. 2013 Oct;106(10):399-407 [PMID: 23759884]
  22. Birth Defects Res A Clin Mol Teratol. 2015 Nov;103(11):962-71 [PMID: 26215888]
  23. Ultrasound Obstet Gynecol. 2022 Dec;60(6):759-765 [PMID: 35726505]
  24. JAMA Netw Open. 2020 Sep 1;3(9):e2018752 [PMID: 32970155]
  25. Pediatr Cardiol. 2010 Jul;31(5):587-97 [PMID: 20165844]
  26. Prenat Diagn. 2014 Mar;34(3):214-22 [PMID: 24222433]
  27. Qual Life Res. 2021 Jan;30(1):193-202 [PMID: 32910402]
  28. Circulation. 2016 Jan 26;133(4):447-54 [PMID: 26811276]
  29. Ultrasound Obstet Gynecol. 2006 Mar;27(3):252-65 [PMID: 16456842]
  30. Cochrane Database Syst Rev. 2018 Mar 01;3:CD011912 [PMID: 29494750]
  31. Arch Dis Child. 2012 Mar;97(3):221-6 [PMID: 22247242]
  32. Obstet Gynecol. 2024 Feb 29;: [PMID: 38422504]
  33. World J Pediatr. 2016 Aug;12(3):298-307 [PMID: 27059744]
  34. Pediatr Cardiol. 2013 Mar;34(3):670-9 [PMID: 23117330]
  35. Acta Paediatr. 2020 Feb;109(2):321-326 [PMID: 31393023]
  36. J Pediatr. 2018 Apr;195:95-101.e4 [PMID: 29336798]
  37. J Perinatol. 2007 Nov;27(11):687-92 [PMID: 17717519]
  38. Ultrasound Obstet Gynecol. 2012 Oct;40(4):418-25 [PMID: 21998002]
  39. Pediatrics. 2013 Sep;132(3):e595-603 [PMID: 23918890]
  40. Am J Obstet Gynecol. 2020 Jun;222(6):B2-B9 [PMID: 32114082]
  41. BJOG. 2016 Feb;123(3):400-7 [PMID: 25625301]
  42. Patient. 2014;7(1):85-96 [PMID: 24271592]
  43. EClinicalMedicine. 2022 Jan 11;43:101249 [PMID: 35059612]
  44. Cochrane Database Syst Rev. 2021 Jun 1;6:CD012602 [PMID: 34061352]
  45. Int J Neonatal Screen. 2017;3(4):34 [PMID: 29376140]
  46. Arq Bras Cardiol. 2018 Nov;111(5):666-673 [PMID: 30281694]
  47. Pediatr Cardiol. 2016 Jan;37(1):37-43 [PMID: 26184611]
  48. Lancet. 1999 Oct 9;354(9186):1242-7 ik [PMID: 10520632]
  49. J Obstet Gynaecol Can. 2014 Mar;36(3):210-215 [PMID: 24612889]
  50. Ultrasound Obstet Gynecol. 2001 May;17(5):386-91 [PMID: 11380961]
  51. J Am Heart Assoc. 2021 Jan 19;10(2):e018037 [PMID: 33432841]
  52. BMC Pregnancy Childbirth. 2012 Jun 07;12:43 [PMID: 22676992]
  53. J Am Coll Cardiol. 2011 Nov 15;58(21):2241-7 [PMID: 22078432]
  54. Am J Obstet Gynecol. 2017 Oct;217(4):469.e1-469.e12 [PMID: 28578168]
  55. Lancet Digit Health. 2022 Jun;4(6):e436-e444 [PMID: 35430151]
  56. J Matern Fetal Neonatal Med. 2009 Feb;22(2):101-5 [PMID: 19085626]
  57. J Pediatr. 2009 Jul;155(1):26-31, 31.e1 [PMID: 19394031]
  58. Health Technol Assess. 2012;16(2):v-xiii, 1-184 [PMID: 22284744]
  59. Clin Perinatol. 2005 Dec;32(4):1043-57, xi [PMID: 16325677]
  60. Acta Obstet Gynecol Scand. 2004 Dec;83(12):1124-9 [PMID: 15548143]
  61. Health Qual Life Outcomes. 2008 Nov 03;6:91 [PMID: 18980676]
  62. Can J Public Health. 2020 Oct;111(5):804-811 [PMID: 31907759]
  63. JAMA Pediatr. 2014 Apr;168(4):361-70 [PMID: 24493342]
  64. Heart. 2006 Sep;92(9):1298-302 [PMID: 16449514]
  65. Heart. 2012 Nov;98(22):1667-73 [PMID: 22888161]
  66. JAMA Cardiol. 2018 Sep 1;3(9):829-837 [PMID: 30027209]
  67. Ultrasound Obstet Gynecol. 2020 Jun;55(6):758-767 [PMID: 31945242]
  68. Circulation. 2001 Mar 6;103(9):1269-73 [PMID: 11238272]
  69. J Am Heart Assoc. 2016 Jun 16;5(6): [PMID: 27312802]
  70. Circulation. 2009 Aug 4;120(5):447-58 [PMID: 19581492]
  71. J Pediatr. 2012 Jul;161(1):94-8.e1 [PMID: 22284567]
  72. JAMA. 2017 Dec 05;318(21):2111-2118 [PMID: 29209720]
  73. Eur J Pediatr. 2019 Jan;178(1):97-103 [PMID: 30334077]
  74. Ultrasound Obstet Gynecol. 2022 Jan;59(1):11-25 [PMID: 34369613]
  75. Br J Nurs. 2009 Dec 10-2010 Jan 13;18(22):1358, 1360-5 [PMID: 20081690]
  76. Nat Med. 2021 May;27(5):764-765 [PMID: 33990805]
  77. Ultrasound Obstet Gynecol. 2019 Oct;54(4):468-476 [PMID: 31408229]
  78. J Pediatr. 2019 Jan;204:66-70 [PMID: 30292491]
  79. Int J Technol Assess Health Care. 2007 Spring;23(2):192-204 [PMID: 17493305]
  80. Lancet. 2021 May 1;397(10285):1658-1667 [PMID: 33915094]
  81. BJOG. 2021 Jan;128(2):259-269 [PMID: 32790134]
  82. J Am Soc Echocardiogr. 2017 Jun;30(6):589-594 [PMID: 28410945]
  83. Ultrasound Obstet Gynecol. 2014 Jul;44(1):50-7 [PMID: 24357432]
  84. Ultrasound Obstet Gynecol. 2020 Oct;56(4):498-505 [PMID: 32530098]
  85. Heart. 2011 Jan;97(2):124-30 [PMID: 21163892]
  86. Pediatrics. 2020 Jul;146(1): [PMID: 32499387]
  87. Pediatr Cardiol. 2015 Apr;36(4):695-712 [PMID: 25618163]
  88. Arch Dis Child. 2016 Jun;101(6):516-520 [PMID: 26130379]
  89. Prenat Diagn. 2006 Jan;26(1):39-44 [PMID: 16378332]
  90. J Alzheimers Dis. 2022;86(4):1527-1543 [PMID: 35253744]
  91. Pediatrics. 2015 Aug;136(2):e378-85 [PMID: 26216324]
  92. J Clin Med. 2022 Nov 29;11(23): [PMID: 36498651]

Word Cloud

Created with Highcharts 10.0.0USDL-USscreeningUSDDLcostlearningnewtechnologyprenatalPOXbasedcostsvsDeepassistultrasoundcongenitaldiseaseassistedplusperformancedata20increased1QALYsmillioneffective&Cost-utilityanalysiscardiacBACKGROUND:candetectionheartCHDstageHenceeconomic-epidemiologicevaluationakaCost-UtilityAnalysisrequiredpolicymakersdecidingwhetheradoptMETHODS:incrementalcost-utilityratiosCURaddingcurrentprovisionpulseoximetrycalculatedbuildingspreadsheetmodelintegrateddemographiceconomicepidemiologicalhealthserviceutilizationsurvivallifetimequalitylifestandardformula:real-worldoperationalroutinereportsopposedresearchstudies145Israeli54readingrecordingscreensRESULTS:additionassociatedsensitivity95%581%resultedfarfewerundiagnosedinfants16102[or29%154%]560659birthsrespectivelyAdoptionwilladd204225largelyoffsetdecreasedtreatment4Thereforeconsidered"verycost-effective"costing720perQALYcombinationssensitivity���>���80%specificity���>���90%adoptioneitherspecificitiesgreater98%sensitivities94%said"dominate"providinglowerCONCLUSION:exploratoryCUAcalculationsindicatefeasibilityleastcost-effectivediagnosisdiseasesusingdeepCongenitalPrenatalUltrasound

Similar Articles

Cited By

No available data.