Learning capabilities to resolve tilt-translation ambiguity in goldfish.

Shin Tadokoro, Yusuke Shinji, Toshimi Yamanaka, Yutaka Hirata
Author Information
  1. Shin Tadokoro: Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan.
  2. Yusuke Shinji: Department of Computer Science, Graduate School of Engineering, Chubu University, Kasugai, Japan.
  3. Toshimi Yamanaka: Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan.
  4. Yutaka Hirata: Department of Robotic Science and Technology, Graduate School of Engineering, Chubu University, Kasugai, Japan.

Abstract

Introduction: Spatial orientation refers to the perception of relative location and self-motion in space. The accurate formation of spatial orientation is essential for animals to survive and interact safely with their environment. The formation of spatial orientation involves the integration of sensory inputs from the vestibular, visual, and proprioceptive systems. Vestibular organs function as specialized head motion sensors, providing information regarding angular velocity and linear acceleration via the semicircular canals and otoliths, respectively. However, because forces arising from the linear acceleration (translation) and inclination relative to the gravitational axis (tilt) are equivalent, they are indistinguishable by accelerometers, including otoliths. This is commonly referred to as the tilt - translation ambiguity, which can occasionally lead to the misinterpretation of translation as a tilt. The major theoretical frameworks addressing this issue have proposed that the interpretation of tilt versus translation may be contingent on an animal's previous experiences of motion. However, empirical confirmation of this hypothesis is lacking.
Methods: In this study, we conducted a behavioral experiment using goldfish to investigate how an animal's motion experience influences its interpretation of tilt vs. translation. We examined a reflexive eye movement called the vestibulo-ocular reflex (VOR), which compensatory-rotates the eyes in response to head motion and is known to reflect an animal's three-dimensional head motion estimate.
Results: We demonstrated that the VORs of na��ve goldfish do not differentiate between translation and tilt at 0.5���Hz. However, following prolonged visual-translation training, which provided appropriate visual stimulation in conjunction with translational head motion, the VORs were capable of distinguishing between the two types of head motion within 3���h. These results were replicated using the Kalman filter model of spatial orientation, which incorporated the variable variance of process noise corresponding to the accumulated motion experience.
Discussion: Based on these experimental and computational findings, we discuss the neural mechanism underlying the resolution of tilt-translation ambiguity within a context analogous to, yet distinct from, previous cross-axis VOR adaptations.

Keywords

References

  1. Exp Brain Res. 2009 Sep;198(2-3):221-31 [PMID: 19352639]
  2. Exp Brain Res. 2018 Nov;236(11):3031-3041 [PMID: 30120498]
  3. Exp Brain Res. 1979 Apr 2;35(2):229-48 [PMID: 108122]
  4. Exp Brain Res. 1999 Jun;126(4):495-500 [PMID: 10422712]
  5. J Neurophysiol. 2005 Jul;94(1):186-98 [PMID: 15728767]
  6. Exp Brain Res. 2001 Apr;137(3-4):323-35 [PMID: 11355379]
  7. J Vestib Res. 2005;15(4):173-83 [PMID: 16286699]
  8. J Neurophysiol. 1997 Oct;78(4):1775-90 [PMID: 9325347]
  9. J Neurophysiol. 2000 Oct;84(4):2113-32 [PMID: 11024100]
  10. J Neurophysiol. 1998 Nov;80(5):2391-404 [PMID: 9819251]
  11. Neuroreport. 2008 Apr 16;19(6):691-3 [PMID: 18382289]
  12. J Physiol. 2017 Apr 15;595(8):2751-2766 [PMID: 28083981]
  13. J Neurophysiol. 1991 May;65(5):1170-82 [PMID: 1869911]
  14. Proc Natl Acad Sci U S A. 2004 May 18;101(20):7745-50 [PMID: 15136747]
  15. J Neurophysiol. 1994 Nov;72(5):2467-79 [PMID: 7884472]
  16. Neuroscience. 2018 Nov 21;393:350-365 [PMID: 30189227]
  17. Exp Brain Res. 1998 Apr;119(3):307-14 [PMID: 9551831]
  18. Neuron. 2007 Jun 21;54(6):973-85 [PMID: 17582336]
  19. Exp Brain Res. 2008 Apr;186(4):677-81 [PMID: 18350283]
  20. Biol Cybern. 2002 Mar;86(3):191-207 [PMID: 12068786]
  21. J Neurophysiol. 1976 Sep;39(5):970-84 [PMID: 824412]
  22. Nature. 1999 Apr 15;398(6728):615-8 [PMID: 10217143]
  23. Ann N Y Acad Sci. 1999 May 28;871:430-4 [PMID: 10372098]
  24. J Assoc Res Otolaryngol. 2022 Aug;23(4):551-566 [PMID: 35768706]
  25. Exp Brain Res. 1991;86(2):347-58 [PMID: 1756810]
  26. J Neurophysiol. 1997 Mar;77(3):1099-118 [PMID: 9084585]
  27. Curr Opin Neurobiol. 1997 Dec;7(6):860-6 [PMID: 9464977]
  28. Ann N Y Acad Sci. 1996 Jun 19;781:693-5 [PMID: 8694479]
  29. J Physiol. 1977 Sep;270(2):321-44 [PMID: 409838]
  30. Exp Brain Res. 2001 Jun;138(4):410-8 [PMID: 11465738]
  31. Neuroreport. 2004 Apr 29;15(6):1007-11 [PMID: 15076724]
  32. Vision Res. 1968 Oct;8(10):1315-35 [PMID: 5753195]
  33. J Neurophysiol. 1994 Sep;72(3):1383-94 [PMID: 7807219]
  34. J Neurophysiol. 1992 Dec;68(6):2003-15 [PMID: 1491254]
  35. Ann N Y Acad Sci. 1999 May 28;871:123-35 [PMID: 10372066]
  36. Exp Brain Res. 1998 Jun;120(4):450-60 [PMID: 9655230]
  37. J Opt Soc Am A Opt Image Sci Vis. 1997 Aug;14(8):1684-95 [PMID: 9248060]
  38. PLoS One. 2012;7(6):e36763 [PMID: 22719833]
  39. J Neurophysiol. 2000 Aug;84(2):1035-49 [PMID: 10938326]
  40. Prog Brain Res. 2019;248:209-223 [PMID: 31239133]
  41. J Neurosci. 1999 Jan 1;19(1):316-27 [PMID: 9870961]
  42. J Neurophysiol. 2008 Dec;100(6):2981-96 [PMID: 18842952]
  43. J Physiol. 2013 Apr 1;591(7):1907-20 [PMID: 23318876]
  44. J Comp Neurol. 1982 Apr 20;206(4):379-89 [PMID: 7096633]
  45. Exp Brain Res. 1991;85(2):389-404 [PMID: 1893987]
  46. Cerebellum. 2013 Feb;12(1):97-107 [PMID: 22777507]
  47. Biol Cybern. 2002 Mar;86(3):209-30 [PMID: 12068787]
  48. J Neurophysiol. 2011 Feb;105(2):896-909 [PMID: 21160010]
  49. J Neurophysiol. 2005 Jul;94(1):199-205 [PMID: 15730979]
  50. Neuroimage. 2002 Aug;16(4):873-82 [PMID: 12202076]
  51. Exp Brain Res. 1995;106(1):123-34 [PMID: 8542968]
  52. Vision Res. 1991;31(3):383-94 [PMID: 1843750]
  53. J Neurophysiol. 2004 Dec;92(6):3546-61 [PMID: 15269231]
  54. J Neurophysiol. 2011 Jan;105(1):209-23 [PMID: 21068266]
  55. J Vestib Res. 2007;17(5-6):209-15 [PMID: 18626132]
  56. Exp Brain Res. 2011 May;210(3-4):407-22 [PMID: 21293850]
  57. J Vestib Res. 1993 Summer;3(2):141-61 [PMID: 8275250]
  58. Adv Space Res. 2003;32(8):1527-32 [PMID: 15000123]
  59. Sci Rep. 2020 Apr 24;10(1):6944 [PMID: 32332917]
  60. J Neurophysiol. 1977 May;40(3):557-72 [PMID: 195018]
  61. Sci Rep. 2022 Jan 26;12(1):1430 [PMID: 35082357]
  62. Brain. 1999 Jul;122 ( Pt 7):1293-303 [PMID: 10388795]
  63. Biol Cybern. 2007 Apr;96(4):389-404 [PMID: 17146661]
  64. J Neurosci. 2018 Nov 28;38(48):10371-10383 [PMID: 30355638]
  65. Nature. 2004 Jul 29;430(6999):560-4 [PMID: 15282606]
  66. Elife. 2017 Oct 18;6: [PMID: 29043978]
  67. J Neurophysiol. 1997 Oct;78(4):1753-68 [PMID: 9325345]
  68. J Neurophysiol. 1977 May;40(3):573-88 [PMID: 874529]
  69. J Physiol. 2010 Oct 15;588(Pt 20):3855-67 [PMID: 20724359]
  70. Exp Brain Res. 2001 Jun;138(3):304-12 [PMID: 11460768]
  71. eNeuro. 2020 Jul 13;7(4): [PMID: 32561572]
  72. Exp Brain Res. 1982;48(1):127-36 [PMID: 7140883]

Word Cloud

Created with Highcharts 10.0.0motiontranslationtiltorientationheadspatialambiguityHoweveranimal'sgoldfishmodelrelativespaceformationvisuallinearaccelerationotolithsaxisinterpretationprevioususingexperiencevestibulo-ocularreflexVORVORswithinKalmanfiltertilt-translationIntroduction:Spatialrefersperceptionlocationself-motionaccurateessentialanimalssurviveinteractsafelyenvironmentinvolvesintegrationsensoryinputsvestibularproprioceptivesystemsVestibularorgansfunctionspecializedsensorsprovidinginformationregardingangularvelocityviasemicircularcanalsrespectivelyforcesarisinginclinationgravitationalequivalentindistinguishableaccelerometersincludingcommonlyreferred-canoccasionallyleadmisinterpretationmajortheoreticalframeworksaddressingissueproposedversusmaycontingentexperiencesempiricalconfirmationhypothesislackingMethods:studyconductedbehavioralexperimentinvestigateinfluencesvsexaminedreflexiveeyemovementcalledcompensatory-rotateseyesresponseknownreflectthree-dimensionalestimateResults:demonstratedna��vedifferentiate05���Hzfollowingprolongedvisual-translationtrainingprovidedappropriatestimulationconjunctiontranslationalcapabledistinguishingtwotypes3���hresultsreplicatedincorporatedvariablevarianceprocessnoisecorrespondingaccumulatedDiscussion:Basedexperimentalcomputationalfindingsdiscussneuralmechanismunderlyingresolutioncontextanalogousyetdistinctcross-axisadaptationsLearningcapabilitiesresolveadaptivelearningabilitygravito-inertialsomatogravicillusionstate

Similar Articles

Cited By