The Application of Artificial Intelligence to Cancer Research: A Comprehensive Guide.

Amin Zadeh Shirazi, Morteza Tofighi, Alireza Gharavi, Guillermo A Gomez
Author Information
  1. Amin Zadeh Shirazi: Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia.
  2. Morteza Tofighi: Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
  3. Alireza Gharavi: Department of Computer Science, Azad University, Mashhad Branch, Mashhad, Iran.
  4. Guillermo A Gomez: Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA, Australia. ORCID

Abstract

Advancements in AI have notably changed cancer research, improving patient care by enhancing detection, survival prediction, and treatment efficacy. This review covers the role of Machine Learning, Soft Computing, and Deep Learning in oncology, explaining key concepts and algorithms (like SVM, Naïve Bayes, and CNN) in a clear, accessible manner. It aims to make AI advancements understandable to a broad audience, focusing on their application in diagnosing, classifying, and predicting various cancer types, thereby underlining AI's potential to better patient outcomes. Moreover, we present a tabular summary of the most significant advances from the literature, offering a time-saving resource for readers to grasp each study's main contributions. The remarkable benefits of AI-powered algorithms in cancer care underscore their potential for advancing cancer research and clinical practice. This review is a valuable resource for researchers and clinicians interested in the transformative implications of AI in cancer care.

Keywords

References

  1. Pharmaceutics. 2023 Mar 07;15(3): [PMID: 36986729]
  2. Appl Health Econ Health Policy. 2022 Nov;20(6):867-880 [PMID: 35934771]
  3. Palliat Support Care. 2022 Apr;20(2):153-158 [PMID: 35574912]
  4. Front Oncol. 2023 Jan 16;12:966506 [PMID: 36727079]
  5. J Healthc Eng. 2020 May 18;2020:8017496 [PMID: 32509260]
  6. Sci Rep. 2023 Apr 7;13(1):5708 [PMID: 37029224]
  7. Diagnostics (Basel). 2023 Apr 06;13(7): [PMID: 37046581]
  8. Diagnostics (Basel). 2023 Feb 22;13(5): [PMID: 36899979]
  9. Hum Genet. 2019 Feb;138(2):109-124 [PMID: 30671672]
  10. Health Informatics J. 2021 Jan-Mar;27(1):1460458221989402 [PMID: 33570011]
  11. Lung Cancer. 2023 Feb;176:4-13 [PMID: 36566582]
  12. Diagnostics (Basel). 2023 Jan 03;13(1): [PMID: 36611453]
  13. Cell. 2023 Apr 13;186(8):1772-1791 [PMID: 36905928]
  14. Cancer Res Treat. 2023 Oct;55(4):1240-1249 [PMID: 36960625]
  15. Cancers (Basel). 2023 Feb 10;15(4): [PMID: 36831474]
  16. Healthcare (Basel). 2022 Oct 11;10(10): [PMID: 36292449]
  17. Comput Math Methods Med. 2020 Oct 5;2020:1016284 [PMID: 33082836]
  18. J Natl Cancer Inst. 2023 Apr 11;115(4):365-374 [PMID: 36688707]
  19. Int J Surg. 2023 Apr 01;109(4):946-952 [PMID: 36917126]
  20. Comput Math Methods Med. 2021 Apr 24;2021:5556992 [PMID: 33986823]
  21. Cancer Epidemiol Biomarkers Prev. 2022 Nov 2;31(11):2087-2091 [PMID: 35984985]
  22. Comput Biol Med. 2019 Feb;105:144-150 [PMID: 30641309]
  23. J Obstet Gynaecol Res. 2023 Jan;49(1):296-303 [PMID: 36220631]
  24. Entropy (Basel). 2022 Feb 08;24(2): [PMID: 35205547]
  25. Med Biol Eng Comput. 2018 May;56(5):721-732 [PMID: 28891042]
  26. Comput Inform Nurs. 2022 Jul 01;40(7):487-496 [PMID: 34570008]
  27. J Cancer Res Clin Oncol. 2023 Aug;149(9):6743-6751 [PMID: 36739356]
  28. Med Biol Eng Comput. 2020 May;58(5):1031-1045 [PMID: 32124225]
  29. J Cancer Educ. 2022 Dec;37(6):1902-1911 [PMID: 34176104]
  30. Comput Biol Med. 2023 Feb;153:106432 [PMID: 36608460]
  31. Endocr Connect. 2022 Nov 17;11(12): [PMID: 36240044]
  32. Am J Cancer Res. 2023 Jan 15;13(1):204-215 [PMID: 36777507]
  33. IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1563-1573 [PMID: 36044492]
  34. Curr Med Imaging. 2023;19(8):832-843 [PMID: 36703586]
  35. PLoS One. 2023 Mar 23;18(3):e0273445 [PMID: 36952523]
  36. Front Immunol. 2023 Jan 20;14:1117908 [PMID: 36742322]
  37. Cancers (Basel). 2022 Dec 12;14(24): [PMID: 36551602]
  38. Int J Womens Health. 2023 Mar 21;15:397-410 [PMID: 36974132]
  39. Math Biosci Eng. 2022 Jan 4;19(3):2193-2205 [PMID: 35240781]
  40. Curr Med Imaging. 2023;19(9):1031-1040 [PMID: 36606588]
  41. Biomed Res Int. 2020 Oct 13;2020:8427574 [PMID: 33102596]
  42. J Comput Biol. 2022 Jun;29(6):565-584 [PMID: 35527646]
  43. Front Oncol. 2023 Feb 06;13:1043463 [PMID: 36814814]
  44. J Cancer Educ. 2023 Aug;38(4):1277-1285 [PMID: 36627471]
  45. Sci Data. 2023 Apr 21;10(1):231 [PMID: 37085533]
  46. Bioengineering (Basel). 2023 Jan 28;10(2): [PMID: 36829667]
  47. Indian J Med Res. 2023 Jan;157(1):11-22 [PMID: 37040222]
  48. Diagnostics (Basel). 2022 Dec 07;12(12): [PMID: 36553095]
  49. Nat Rev Clin Oncol. 2022 Feb;19(2):132-146 [PMID: 34663898]
  50. J Appl Clin Med Phys. 2023 May;24(5):e13967 [PMID: 36943700]
  51. Lancet Child Adolesc Health. 2022 Apr;6(4):260-268 [PMID: 34871572]
  52. Otolaryngol Head Neck Surg. 2023 Mar;168(3):319-329 [PMID: 35787073]
  53. J Med Internet Res. 2023 Mar 31;25:e44248 [PMID: 37000507]
  54. Front Mol Biosci. 2022 Jan 13;8:815243 [PMID: 35096975]
  55. Diagn Interv Imaging. 2023 Jan;104(1):11-17 [PMID: 36513593]
  56. Mol Ther Nucleic Acids. 2022 Dec 27;31:224-240 [PMID: 36700042]
  57. J Digit Imaging. 2023 Aug;36(4):1643-1652 [PMID: 37029285]
  58. Ethn Health. 2023 Apr;28(3):358-372 [PMID: 35138199]
  59. Microsc Res Tech. 2022 Jan;85(1):339-351 [PMID: 34448519]
  60. Pac Symp Biocomput. 2023;28:186-197 [PMID: 36540976]
  61. Int J Environ Res Public Health. 2023 Feb 27;20(5): [PMID: 36901255]
  62. Open Med (Wars). 2020 Sep 08;15(1):860-871 [PMID: 33336044]
  63. Cancer Control. 2023 Jan-Dec;30:10732748231159553 [PMID: 36847148]
  64. Br J Cancer. 2021 Aug;125(3):337-350 [PMID: 33927352]
  65. J Pers Med. 2020 Nov 12;10(4): [PMID: 33198332]

MeSH Term

Humans
Neoplasms
Artificial Intelligence
Algorithms
Biomedical Research
Machine Learning

Word Cloud

Created with Highcharts 10.0.0cancerAIcareresearchpatientreviewLearningalgorithmspotentialresourcelearningmachineAdvancementsnotablychangedimprovingenhancingdetectionsurvivalpredictiontreatmentefficacycoversroleMachineSoftComputingDeeponcologyexplainingkeyconceptslikeSVMNaïveBayesCNNclearaccessiblemanneraimsmakeadvancementsunderstandablebroadaudiencefocusingapplicationdiagnosingclassifyingpredictingvarioustypestherebyunderliningAI'sbetteroutcomesMoreoverpresenttabularsummarysignificantadvancesliteratureofferingtime-savingreadersgraspstudy'smaincontributionsremarkablebenefitsAI-poweredunderscoreadvancingclinicalpracticevaluableresearcherscliniciansinterestedtransformativeimplicationsApplicationArtificialIntelligenceCancerResearch:ComprehensiveGuideartificialintelligencedeepvisionsoftcomputing

Similar Articles

Cited By