Drug repositioning in thyroid cancer: from point mutations to gene fusions.

David Sánchez-Marín, Macrina Beatriz Silva-Cázares, Manuel González-Del Carmen, Alma D Campos-Parra
Author Information
  1. David Sánchez-Marín: Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico, Mexico.
  2. Macrina Beatriz Silva-Cázares: Unidad Académica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí, (UASL), Matehuala, San Luis Potosí, Mexico.
  3. Manuel González-Del Carmen: Facultad de Medicina, Universidad Veracruzana (UV), Ciudad Mendoza, Veracruz, Mexico.
  4. Alma D Campos-Parra: Instituto de Salud Pública, Universidad Veracruzana (UV), Xalapa, Veracruz, Mexico.

Abstract

The diagnosis of thyroid cancer (TC) has increased dramatically in recent years. Papillary TC is the most frequent type and has shown a good prognosis. Conventional treatments for TC are surgery, hormonal therapy, radioactive iodine, chemotherapy, and targeted therapy. However, resistance to treatments is well documented in almost 20% of all cases. Genomic sequencing has provided valuable information to help identify variants that hinder the success of chemotherapy as well as to determine which of those represent potentially druggable targets. There is a plethora of targeted therapies for cancer, most of them directed toward point mutations; however, chromosomal rearrangements that generate fusion genes are becoming relevant in cancer but have been less explored in TC. Therefore, it is relevant to identify new potential inhibitors for genes that are recurrent in the formation of gene fusions. In this review, we focus on describing potentially druggable variants and propose both point variants and fusion genes as targets for drug repositioning in TC.

Keywords

References

  1. BMB Rep. 2008 Dec 31;41(12):833-9 [PMID: 19123972]
  2. Cell Rep. 2016 Sep 13;16(11):3052-3061 [PMID: 27626672]
  3. Cancers (Basel). 2022 Jun 24;14(13): [PMID: 35804872]
  4. Int J Mol Sci. 2023 May 29;24(11): [PMID: 37298373]
  5. Front Oncol. 2022 Jan 19;11:778296 [PMID: 35127482]
  6. Br J Pharmacol. 2004 Dec;143(8):933-7 [PMID: 15533890]
  7. Eur Thyroid J. 2022 Dec 22;12(1): [PMID: 36378538]
  8. Lung Cancer (Auckl). 2021 May 20;12:35-50 [PMID: 34295201]
  9. Cancers (Basel). 2023 Dec 25;16(1): [PMID: 38201541]
  10. Curr Med Chem. 2017;24(16):1671-1686 [PMID: 28078996]
  11. Transl Cancer Res. 2020 Oct;9(10):6505-6515 [PMID: 35117258]
  12. Clin Cancer Res. 2023 Jul 14;29(14):2678-2685 [PMID: 37260297]
  13. Onco Targets Ther. 2020 Dec 04;13:12515-12519 [PMID: 33311990]
  14. Oncotarget. 2017 May 16;8(20):33972-33989 [PMID: 28430641]
  15. Am J Cancer Res. 2022 Nov 15;12(11):4930-4953 [PMID: 36504899]
  16. Mol Med. 2023 Sep 8;29(1):121 [PMID: 37684566]
  17. Thyroid. 2018 Feb;28(2):158-167 [PMID: 29281951]
  18. Novartis Found Symp. 2008;289:74-84; discussion 84-93 [PMID: 18497096]
  19. J Oncol Pharm Pract. 2020 Mar;26(2):434-444 [PMID: 31594518]
  20. Oncotarget. 2019 Mar 19;10(23):2320-2334 [PMID: 31040922]
  21. Front Oncol. 2022 Sep 02;12:949098 [PMID: 36119511]
  22. Am Health Drug Benefits. 2015 Feb;8(1):30-40 [PMID: 25964831]
  23. Front Oncol. 2021 Apr 15;11:638701 [PMID: 33937040]
  24. Oncotarget. 2015 Mar 20;6(8):5678-94 [PMID: 25691057]
  25. J Immunother Cancer. 2021 Aug;9(8): [PMID: 34341130]
  26. Cancer Res. 2003 Oct 15;63(20):6784-90 [PMID: 14583474]
  27. Oncologist. 2022 Feb 3;27(1):13-21 [PMID: 34516023]
  28. Front Oncol. 2023 Jul 07;13:1102936 [PMID: 37483485]
  29. Nat Commun. 2021 Feb 18;12(1):1134 [PMID: 33602934]
  30. N Engl J Med. 2020 Sep 24;383(13):1207-1217 [PMID: 32955176]
  31. JCO Precis Oncol. 2017;2017: [PMID: 29623306]
  32. Lancet Oncol. 2016 Sep;17(9):1272-82 [PMID: 27460442]
  33. Ther Adv Med Oncol. 2022 Jun 21;14:17588359221101691 [PMID: 35756966]
  34. Mol Diagn Ther. 2022 Mar;26(2):203-227 [PMID: 35266116]
  35. Ann Oncol. 2017 Feb 1;28(2):292-297 [PMID: 27803005]
  36. Lancet Oncol. 2016 Dec;17(12):1653-1660 [PMID: 27825636]
  37. Diagn Cytopathol. 2023 Jun;51(6):349-355 [PMID: 36752652]
  38. Lancet Diabetes Endocrinol. 2021 Aug;9(8):491-501 [PMID: 34118198]
  39. World J Surg Oncol. 2022 Dec 6;20(1):386 [PMID: 36471407]
  40. Biology (Basel). 2022 Feb 17;11(2): [PMID: 35205190]
  41. Front Surg. 2022 Apr 26;9:877206 [PMID: 35558387]
  42. Onco Targets Ther. 2020 Jan 06;13:45-50 [PMID: 32021253]
  43. Cancer Res. 2003 Apr 1;63(7):1454-7 [PMID: 12670889]
  44. Neoplasia. 2023 Feb;36:100866 [PMID: 36586182]
  45. J Transl Med. 2023 Jan 9;21(1):9 [PMID: 36624452]
  46. Expert Rev Endocrinol Metab. 2022 Mar;17(2):167-178 [PMID: 35404189]
  47. Cancer Manag Res. 2019 Aug 21;11:7893-7907 [PMID: 31686907]
  48. Endocr Relat Cancer. 2014 Oct;21(5):T301-13 [PMID: 24829266]
  49. J Clin Oncol. 2017 Oct 10;35(29):3315-3321 [PMID: 28817373]
  50. Mod Pathol. 2020 Dec;33(12):2458-2472 [PMID: 32737449]
  51. Thyroid. 2015 Oct;25(10):1106-14 [PMID: 26148759]
  52. Int J Endocrinol. 2015;2015:405217 [PMID: 26649038]
  53. Oncology. 2022;100(9):467-474 [PMID: 35679833]
  54. Cancer Chemother Pharmacol. 2014 Oct;74(4):787-98 [PMID: 25107568]
  55. Genes Chromosomes Cancer. 2017 Sep;56(9):663-667 [PMID: 28510278]
  56. Transl Oncol. 2018 Jun;11(3):609-618 [PMID: 29571074]
  57. Mol Cancer Ther. 2020 Jul;19(7):1406-1414 [PMID: 32371576]
  58. Cancer Discov. 2020 Jan;10(1):54-71 [PMID: 31658955]
  59. In Vivo. 2022 Sep-Oct;36(5):2434-2441 [PMID: 36099120]
  60. Methods Mol Biol. 2019;1877:1-21 [PMID: 30535995]
  61. Cancer Cell Int. 2021 Jul 20;21(1):387 [PMID: 34284788]
  62. Cancer Res. 2009 Sep 15;69(18):7311-9 [PMID: 19706758]
  63. Ther Clin Risk Manag. 2021 Mar 05;17:193-207 [PMID: 33707948]
  64. Lancet Diabetes Endocrinol. 2022 Apr;10(4):264-272 [PMID: 35271818]
  65. Nat Rev Cancer. 2015 Jun;15(6):371-81 [PMID: 25998716]
  66. Clin Cancer Res. 2001 Mar;7(3):709-23 [PMID: 11297268]
  67. Nat Commun. 2014 Sep 10;5:4846 [PMID: 25204415]
  68. Appl Biochem Biotechnol. 2023 Dec;195(12):7766-7795 [PMID: 37086377]
  69. Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2307-2312 [PMID: 28193878]
  70. J Endocrinol Invest. 2017 Jan;40(1):55-62 [PMID: 27535135]
  71. Endocrinol Diabetes Nutr (Engl Ed). 2018 Mar;65(3):133-135 [PMID: 29396216]
  72. Endocrinol Metab Clin North Am. 2017 Dec;46(4):1009-1038 [PMID: 29080633]
  73. Front Oncol. 2022 Jul 26;12:914031 [PMID: 35957893]
  74. Sci Rep. 2023 Mar 13;13(1):4116 [PMID: 36914665]
  75. Pharmacol Ther. 2019 Jun;198:135-159 [PMID: 30822465]
  76. Recent Results Cancer Res. 2018;211:67-75 [PMID: 30069760]
  77. Dev Cell. 2017 Apr 10;41(1):72-81.e6 [PMID: 28399403]
  78. Front Mol Biosci. 2020 Nov 24;7:565383 [PMID: 33324676]
  79. Clin Chim Acta. 2022 Jan 15;525:69-83 [PMID: 34951962]
  80. Sci Rep. 2019 Jan 31;9(1):1074 [PMID: 30705370]
  81. Nat Rev Clin Oncol. 2018 Dec;15(12):731-747 [PMID: 30333516]
  82. Eur J Med Chem. 2022 Aug 5;238:114500 [PMID: 35675754]
  83. Biochim Biophys Acta Mol Basis Dis. 2024 Feb;1870(2):166971 [PMID: 38029942]
  84. Int J Biol Markers. 2021 Dec;36(4):21-26 [PMID: 34825595]
  85. Curr Oncol Rep. 2023 Jun;25(6):623-634 [PMID: 36995534]
  86. Nat Rev Endocrinol. 2014 Oct;10(10):616-23 [PMID: 25069464]
  87. Proc Jpn Acad Ser B Phys Biol Sci. 2015;91(5):193-201 [PMID: 25971657]
  88. N Engl J Med. 2023 Nov 16;389(20):1851-1861 [PMID: 37870969]
  89. Yonsei Med J. 2017 Jan;58(1):9-18 [PMID: 27873490]
  90. Oncologist. 2021 Jan;26(1):7-16 [PMID: 32852072]
  91. J Clin Endocrinol Metab. 2018 Apr 1;103(4):1277-1281 [PMID: 29373711]
  92. Cancer Discov. 2023 Jan 9;13(1):98-113 [PMID: 36264123]
  93. Cell Chem Biol. 2022 Oct 20;29(10):1517-1531.e7 [PMID: 36206753]
  94. Int J Radiat Oncol Biol Phys. 2024 Apr 1;118(5):1379-1390 [PMID: 37979706]
  95. Med Dosw Mikrobiol. 1988;40(3):155-60 [PMID: 3246918]
  96. Cancer Res. 2008 Sep 1;68(17):7156-64 [PMID: 18757431]
  97. Cancer Res. 2006 Feb 1;66(3):1491-9 [PMID: 16452205]

Word Cloud

Created with Highcharts 10.0.0TCcancervariantsthyroidpointmutationsgenesgenefusionstreatmentstherapychemotherapytargetedwellidentifypotentiallydruggabletargetsfusionrelevantrepositioningdiagnosisincreaseddramaticallyrecentyearsPapillaryfrequenttypeshowngoodprognosisConventionalsurgeryhormonalradioactiveiodineHoweverresistancedocumentedalmost20%casesGenomicsequencingprovidedvaluableinformationhelphindersuccessdeterminerepresentplethoratherapiesdirectedtowardhoweverchromosomalrearrangementsgeneratebecominglessexploredThereforenewpotentialinhibitorsrecurrentformationreviewfocusdescribingproposedrugDrugcancer:repurposeddrugs

Similar Articles

Cited By