On the Role of Starchy Grains in Ice Nucleation Processes.

Sandeep Bose, Devendra Pal, Parisa A Ariya
Author Information
  1. Sandeep Bose: Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada. ORCID
  2. Devendra Pal: Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A 0B9, Canada.
  3. Parisa A Ariya: Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada. ORCID

Abstract

Little is known about the role of starchy food on climate change processes like ice nucleation. Here, we investigate the ice nucleation efficiency (INE) of eight different starchy food materials, namely, corn (CO), potato (PO), barley (BA), brown rice (BR), white rice (WR), oats (OA), wheat (WH), and sweet potato (SP), in immersion freezing mode under mixed-phase cloud conditions. Notably, among all these food materials, PO and BA exhibit the highest ice nucleation efficiency with ice nucleation temperatures as high as -4.3 °C ( ∼ -7.0 ± 0.5 °C) and -6.5 °C ( ∼ -7.2 ± 0.2 °C), respectively. We also explore the effect of environmentally relevant physicochemical conditions on ice nucleation efficiency, including different pH, temperature, UV/O/NO exposure, and various cocontaminants. The change in shape, size, surface properties, hydrophobicity, and crystallinity of materials accounted for the altered INE. The increase in shape, size, and hydrophobicity of the sample generally reduces the INE, whereas an increase in crystallinity enhances the INE of the sample under our experimental conditions. The results suggest that environmentally relevant concentrations slightly alter INE, indicating their role as catalysts in environmental matrices. The outcome of studies on the ice nucleation properties of these food-containing aerosols might help in the physicochemical understanding of other biomolecule-induced ice nucleation, which is still an underdeveloped research area.

References

  1. Science. 1970 May 22;168(3934):939-49 [PMID: 5462399]
  2. Int J Biol Macromol. 2023 Aug 17;251:126395 [PMID: 37595719]
  3. J Bacteriol. 1988 Feb;170(2):669-75 [PMID: 3123461]
  4. Environ Sci Pollut Res Int. 2018 May;25(14):13511-13524 [PMID: 29492819]
  5. Materials (Basel). 2019 May 26;12(10): [PMID: 31130680]
  6. J Phys Chem A. 2014 Sep 4;118(35):7330-7 [PMID: 24533525]
  7. Int J Nanomedicine. 2020 Apr 21;15:2669-2683 [PMID: 32368048]
  8. Curr Protoc Protein Sci. 2012 Nov;Chapter 17:17.14.1-17.14.18 [PMID: 23151743]
  9. Thorax. 1997 Aug;52(8):680-5 [PMID: 9337825]
  10. Part Fibre Toxicol. 2020 Jan 20;17(1):4 [PMID: 31959190]
  11. Environ Health Perspect. 2016 Sep;124(9):1334-43 [PMID: 27082891]
  12. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7256-60 [PMID: 3020542]
  13. J Phys Chem C Nanomater Interfaces. 2018 Apr 19;122(15):8182-8190 [PMID: 29707097]
  14. Eur Respir J. 2008 Aug;32(2):452-9 [PMID: 18417513]
  15. J Am Chem Soc. 2014 Feb 26;136(8):3156-64 [PMID: 24495074]
  16. Annu Rev Phys Chem. 2004;55:333-61 [PMID: 15117256]
  17. Phys Rev Lett. 2003 Aug 8;91(6):068301 [PMID: 12935114]
  18. J Phys Chem A. 2014 Oct 30;118(43):10036-47 [PMID: 25280086]
  19. Phys Chem Chem Phys. 2021 Feb 7;23(5):3565-3573 [PMID: 33514965]
  20. J Air Waste Manag Assoc. 2020 Jun;70(6):583-615 [PMID: 32240055]
  21. Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11770-11775 [PMID: 27791053]
  22. Agric For Meteorol. 2022 Aug 15;323:109034 [PMID: 36003366]
  23. Angew Chem Int Ed Engl. 2013 Aug 12;52(33):8708-12 [PMID: 23824560]
  24. J Asthma Allergy. 2019 May 06;12:101-108 [PMID: 31190900]
  25. Mutat Res. 2004 Jan 10;557(1):99-108 [PMID: 14706522]
  26. Nature. 2013 Feb 7;494(7435):27-9 [PMID: 23389527]
  27. Phys Chem Chem Phys. 2017 Aug 23;19(33):21929-21932 [PMID: 28796266]
  28. Int J Environ Res Public Health. 2013 Dec 24;11(1):337-54 [PMID: 24368426]
  29. Mol Plant Microbe Interact. 1989 Sep-Oct;2(5):262-72 [PMID: 2520825]
  30. Science. 2002 Feb 15;295(5558):1272-5 [PMID: 11847336]
  31. Am J Ind Med. 2010 Dec;53(12):1225-32 [PMID: 20862699]
  32. Sci Total Environ. 2018 Jun 15;627:1377-1388 [PMID: 30857101]
  33. Food Sci Nutr. 2018 Jul 12;6(6):1352-1356 [PMID: 30258575]
  34. Int J Occup Saf Ergon. 2015;21(3):241-9 [PMID: 26414680]
  35. J Phys Chem A. 2015 Mar 19;119(11):2692-700 [PMID: 25584435]
  36. Proc Natl Acad Sci U S A. 2021 May 18;118(20): [PMID: 33972419]
  37. Eur Respir J. 2003 Apr;21(4):646-51 [PMID: 12762351]
  38. ACS Nano. 2021 Feb 23;15(2):2730-2737 [PMID: 33464042]

Word Cloud

Created with Highcharts 10.0.0icenucleationINE°Cfoodefficiencymaterialsconditions0rolestarchychangedifferentpotatoPOBArice-7±52environmentallyrelevantphysicochemicalshapesizepropertieshydrophobicitycrystallinityincreasesampleLittleknownclimateprocesseslikeinvestigateeightnamelycornCObarleybrownBRwhiteWRoatsOAwheatWHsweetSPimmersionfreezingmodemixed-phasecloudNotablyamongexhibithighesttemperatureshigh-43-6respectivelyalsoexploreeffectincludingpHtemperatureUV/O/NOexposurevariouscocontaminantssurfaceaccountedalteredgenerallyreduceswhereasenhancesexperimentalresultssuggestconcentrationsslightlyalterindicatingcatalystsenvironmentalmatricesoutcomestudiesfood-containingaerosolsmighthelpunderstandingbiomolecule-inducedstillunderdevelopedresearchareaRoleStarchyGrainsIceNucleationProcesses

Similar Articles

Cited By

No available data.